Пример #1
0
    def __init__(self, config, output_dim, activation, **kwargs):
        super(RecurrentEncoder, self).__init__(**kwargs)

        self.config = config
        self.context_embedder = ContextEmbedder(config)

        self.rec = SegregatedBidirectional(LSTM(dim=config.rec_state_dim, name='encoder_recurrent'))

        self.fwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'],
                             prototype=Linear(), name='fwd_fork')
        self.bkwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'],
                              prototype=Linear(), name='bkwd_fork')

        rto_in = config.rec_state_dim * 2 + sum(x[2] for x in config.dim_embeddings)
        self.rec_to_output = MLP(
                    activations=[Rectifier() for _ in config.dim_hidden] + [activation],
                    dims=[rto_in] + config.dim_hidden + [output_dim],
                    name='encoder_rto')

        self.children = [self.context_embedder, self.rec, self.fwd_fork, self.bkwd_fork, self.rec_to_output]

        self.rec_inputs = ['latitude', 'longitude', 'latitude_mask']
        self.inputs = self.context_embedder.inputs + self.rec_inputs
Пример #2
0
class RecurrentEncoder(Initializable):
    def __init__(self, config, output_dim, activation, **kwargs):
        super(RecurrentEncoder, self).__init__(**kwargs)

        self.config = config
        self.context_embedder = ContextEmbedder(config)

        self.rec = SegregatedBidirectional(LSTM(dim=config.rec_state_dim, name='encoder_recurrent'))

        self.fwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'],
                             prototype=Linear(), name='fwd_fork')
        self.bkwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'],
                              prototype=Linear(), name='bkwd_fork')

        rto_in = config.rec_state_dim * 2 + sum(x[2] for x in config.dim_embeddings)
        self.rec_to_output = MLP(
                    activations=[Rectifier() for _ in config.dim_hidden] + [activation],
                    dims=[rto_in] + config.dim_hidden + [output_dim],
                    name='encoder_rto')

        self.children = [self.context_embedder, self.rec, self.fwd_fork, self.bkwd_fork, self.rec_to_output]

        self.rec_inputs = ['latitude', 'longitude', 'latitude_mask']
        self.inputs = self.context_embedder.inputs + self.rec_inputs

    def _push_allocation_config(self):
        for i, fork in enumerate([self.fwd_fork, self.bkwd_fork]):
            fork.input_dim = 2
            fork.output_dims = [ self.rec.children[i].get_dim(name)
                                 for name in fork.output_names ]

    def _push_initialization_config(self):
        for brick in self.children:
            brick.weights_init = self.config.weights_init
            brick.biases_init = self.config.biases_init

    @application
    def apply(self, latitude, longitude, latitude_mask, **kwargs):
        latitude = (latitude.T - data.train_gps_mean[0]) / data.train_gps_std[0]
        longitude = (longitude.T - data.train_gps_mean[1]) / data.train_gps_std[1]
        latitude_mask = latitude_mask.T

        rec_in = tensor.concatenate((latitude[:, :, None], longitude[:, :, None]),
                                    axis=2)
        path = self.rec.apply(merge(self.fwd_fork.apply(rec_in, as_dict=True),
                                    {'mask': latitude_mask}),
                              merge(self.bkwd_fork.apply(rec_in, as_dict=True),
                                    {'mask': latitude_mask}))[0]

        last_id = tensor.cast(latitude_mask.sum(axis=0) - 1, dtype='int64')
        
        path_representation = (path[0][:, -self.config.rec_state_dim:],
                path[last_id - 1, tensor.arange(last_id.shape[0])]
                    [:, :self.config.rec_state_dim])

        embeddings = tuple(self.context_embedder.apply(
                            **{k: kwargs[k] for k in self.context_embedder.inputs }))

        inputs = tensor.concatenate(path_representation + embeddings, axis=1)
        outputs = self.rec_to_output.apply(inputs)

        return outputs

    @apply.property('inputs')
    def apply_inputs(self):
        return self.inputs