Пример #1
0
    def test_merge_method_seq_concat(self):
        bx1 = BLayer.Input(shape=(10, ))
        bx1_1 = BLayer.Input(shape=(10, ))
        bx2 = BLayer.Input(shape=(10, ))
        by1 = BLayer.Dense(12, activation="sigmoid")(bx1)
        bbranch1_node = BModel(bx1, by1)(bx1_1)
        bbranch2 = BSequential()
        bbranch2.add(BLayer.Dense(12, input_dim=10))
        bbranch2_node = bbranch2(bx2)
        bz = BLayer.merge([bbranch1_node, bbranch2_node], mode="concat")
        bmodel = BModel([bx1_1, bx2], bz)

        kx1 = KLayer.Input(shape=(10, ))
        kx2 = KLayer.Input(shape=(10, ))
        ky1 = KLayer.Dense(12, activation="sigmoid")(kx1)
        kbranch1_node = KModel(kx1, ky1)(kx1)
        kbranch2 = KSequential()
        kbranch2.add(KLayer.Dense(12, input_dim=10))
        kbranch2_node = kbranch2(kx2)
        kz = KLayer.merge([kbranch1_node, kbranch2_node], mode="concat")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 10]), np.random.random([2, 10])]
        self.compare_newapi(kmodel, bmodel, input_data,
                            self.convert_two_dense_model)
Пример #2
0
 def test_graph(self):
     x1 = BLayer.Input(input_shape=(8, ))
     x2 = BLayer.Input(input_shape=(6, ))
     y1 = BLayer.Dense(10)(x1)
     y2 = BLayer.Dense(10)(x2)
     model = BLayer.Model([x1, x2], [y1, y2])
     input_shapes = model.get_input_shape()
     np.testing.assert_allclose((8, ), input_shapes[0][1:])
     np.testing.assert_allclose((6, ), input_shapes[1][1:])
Пример #3
0
    def test_train_dataset(self):
        images = []
        labels = []
        for i in range(0, 8):
            features = np.random.uniform(0, 1, (200, 200, 3))
            label = np.array([2])
            images.append(features)
            labels.append(label)
        image_frame = DistributedImageFrame(self.sc.parallelize(images),
                                            self.sc.parallelize(labels))

        transformer = Pipeline([
            BytesToMat(),
            Resize(256, 256),
            CenterCrop(224, 224),
            ChannelNormalize(0.485, 0.456, 0.406, 0.229, 0.224, 0.225),
            MatToTensor(),
            ImageFrameToSample(target_keys=['label'])
        ])
        data_set = DataSet.image_frame(image_frame).transform(transformer)

        model = BSequential()
        model.add(BLayer.Convolution2D(1, 5, 5, input_shape=(3, 224, 224)))
        model.add(BLayer.Reshape((1 * 220 * 220, )))
        model.add(BLayer.Dense(20, activation="softmax"))
        model.compile(optimizer="sgd",
                      loss="sparse_categorical_crossentropy",
                      metrics=["accuracy"])
        model.fit(data_set, batch_size=8, nb_epoch=2, validation_data=data_set)
Пример #4
0
    def test_merge_method_sum(self):
        bx1 = BLayer.Input(shape=(8, ))
        bx2 = BLayer.Input(shape=(6, ))
        by1 = BLayer.Dense(10)(bx1)
        by2 = BLayer.Dense(10)(bx2)
        bz = BLayer.merge([by1, by2], mode="sum")
        bmodel = BModel([bx1, bx2], bz, name="graph1")

        kx1 = KLayer.Input(shape=(8, ))
        kx2 = KLayer.Input(shape=(6, ))
        ky1 = KLayer.Dense(10)(kx1)
        ky2 = KLayer.Dense(10)(kx2)
        kz = kmerge([ky1, ky2], mode="sum")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 8]), np.random.random([2, 6])]
        self.compare_newapi(kmodel, bmodel, input_data,
                            self.convert_two_dense_model)
Пример #5
0
    def test_merge_method_model_concat(self):
        bx1 = BLayer.Input(shape=(4, ))
        bx2 = BLayer.Input(shape=(5, ))
        by1 = BLayer.Dense(6, activation="sigmoid")(bx1)
        bbranch1 = BModel(bx1, by1)(bx1)
        bbranch2 = BLayer.Dense(8)(bx2)
        bz = BLayer.merge([bbranch1, bbranch2], mode="concat")
        bmodel = BModel([bx1, bx2], bz)

        kx1 = KLayer.Input(shape=(4, ))
        kx2 = KLayer.Input(shape=(5, ))
        ky1 = KLayer.Dense(6, activation="sigmoid")(kx1)
        kbranch1 = KModel(kx1, ky1)(kx1)
        kbranch2 = KLayer.Dense(8)(kx2)
        kz = KLayer.merge([kbranch1, kbranch2], mode="concat")
        kmodel = KModel([kx1, kx2], kz)

        input_data = [np.random.random([2, 4]), np.random.random([2, 5])]
        self.compare_newapi(kmodel, bmodel, input_data,
                            self.convert_two_dense_model)
Пример #6
0
 def test_train(self):
     x = np.random.random([32, 10])
     y = np.random.random([
         32,
     ])
     model = BSequential()
     model.add(BLayer.Dense(5, input_shape=(10, )))
     model.compile(optimizer="sgd", loss="mse", metrics=["accuracy"])
     model.fit(x, y, batch_size=8, nb_epoch=2, validation_data=(x, y))
     model.evaluate(x, y, batch_size=8)
     model.predict(x)