def main(_): # 1. change the dataset # dataset = imagenet.get_split('train'), FLAGS.data_dir) dataset = flowers.get_split(FLAGS.data_split, FLAGS.data_dir) model = InceptionModel(checkpoints_file=FLAGS.checkpoint_file_path) # 2. set the model to training mode # op, graph model.build(dataset, image_height=224, image_width=224, num_classes=1000, is_training=True) op, graph = model.build(dataset, image_height=224, image_width=224, num_classes=1000, is_training=False) # 3. comment out the actual training code # slim.learning.train( # op, # logdir=train_dir, # init_fn=model.init_fn, # number_of_steps=100) # 4. dump model to the specified path from bigdl.util.tf_utils import dump_model dump_model(path=FLAGS.dump_model_path, ckpt_file=FLAGS.checkpoint_file_path, graph=graph)
def main(): """ How to run this script: python export_tf_checkpoint.py meta_file chkp_file save_path """ saver = tf.train.import_meta_graph(argv[1]) with tf.Session() as sess: saver.restore(sess, argv[2]) dump_model(argv[3], sess)
def main(): meta_file = None checkpoint = None save_path = "model" saver_folder = None if len(argv) == 2: if op.isdir(argv[1]): saver_folder = argv[1] else: meta_file = argv[1] + ".meta" checkpoint = argv[1] elif len(argv) == 3: if op.isdir(argv[1]): saver_folder = argv[1] else: meta_file = argv[1] + ".meta" checkpoint = argv[1] save_path = argv[2] elif len(argv) == 4: meta_file = argv[1] checkpoint = argv[2] save_path = argv[3] else: print( "Invalid script arguments. How to run the script:\n" + "python export_tf_checkpoint.py checkpoint_name\n" + "python export_tf_checkpoint.py saver_folder\n" + "python export_tf_checkpoint.py checkpoint_name save_path\n" + "python export_tf_checkpoint.py saver_folder save_path\n" + "python export_tf_checkpoint.py meta_file checkpoint_name save_path" ) exit(1) if op.isfile(save_path): print("The save folder is a file. Exit") exit(1) if not op.exists(save_path): print("create folder " + save_path) os.makedirs(save_path) with tf.Session() as sess: if saver_folder is None: saver = tf.train.import_meta_graph(meta_file, clear_devices=True) saver.restore(sess, checkpoint) else: tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], saver_folder) checkpoint = save_path + '/model.ckpt' saver = tf.train.Saver() saver.save(sess, checkpoint) dump_model(save_path, None, sess, checkpoint)
def main(): meta_file = None checkpoint = None save_path = "model" saver_folder = None if len(argv) == 2: if op.isdir(argv[1]): saver_folder = argv[1] else: meta_file = argv[1] + ".meta" checkpoint = argv[1] elif len(argv) == 3: if op.isdir(argv[1]): saver_folder = argv[1] else: meta_file = argv[1] + ".meta" checkpoint = argv[1] save_path = argv[2] elif len(argv) == 4: meta_file = argv[1] checkpoint = argv[2] save_path = argv[3] else: print("Invalid script arguments. How to run the script:\n" + "python export_tf_checkpoint.py checkpoint_name\n" + "python export_tf_checkpoint.py saver_folder\n" + "python export_tf_checkpoint.py checkpoint_name save_path\n" + "python export_tf_checkpoint.py saver_folder save_path\n" + "python export_tf_checkpoint.py meta_file checkpoint_name save_path") exit(1) if op.isfile(save_path): print("The save folder is a file. Exit") exit(1) if not op.exists(save_path): print("create folder " + save_path) os.makedirs(save_path) with tf.Session() as sess: if saver_folder is None: saver = tf.train.import_meta_graph(meta_file, clear_devices=True) saver.restore(sess, checkpoint) else: tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], saver_folder) checkpoint = save_path + '/model.ckpt' saver = tf.train.Saver() saver.save(sess, checkpoint) dump_model(save_path, None, sess, checkpoint)
import tensorflow as tf # This is your model definition. xs = tf.placeholder(tf.float32, [None, 1]) W1 = tf.Variable(tf.zeros([1,10])+0.2) b1 = tf.Variable(tf.zeros([10])+0.1) Wx_plus_b1 = tf.nn.bias_add(tf.matmul(xs,W1), b1) output = tf.nn.tanh(Wx_plus_b1, name="output") # Adding the following lines right after your model definition from bigdl.util.tf_utils import dump_model dump_model_path = "/tmp/model" # This line of code will create a Session and initialized all the Variable and # save the model definition and variable to dump_model_path as BigDL readable format. dump_model(path=dump_model_path)