def hc_multi_select(ids_from, ids_to, h_froms, c_froms): h_vecs = multi_index_select(ids_from, ids_to, *h_froms) c_vecs = multi_index_select(ids_from, ids_to, *c_froms) return h_vecs, c_vecs
def forward_train(self, h_bot, c_bot, h_buf0, c_buf0, prev_rowsum_h, prrev_rowsum_c): # embed row tree tree_agg_ids = TreeLib.PrepareRowEmbed() row_embeds = [(self.init_h0, self.init_c0)] if h_bot is not None: row_embeds.append((h_bot, c_bot)) if prev_rowsum_h is not None: row_embeds.append((prev_rowsum_h, prrev_rowsum_c)) if h_buf0 is not None: row_embeds.append((h_buf0, c_buf0)) th_bot = h_bot tc_bot = c_bot for i, all_ids in enumerate(tree_agg_ids): fn_ids = lambda x: all_ids[x] if i: th_bot = tc_bot = None new_states = batch_tree_lstm3(th_bot, tc_bot, row_embeds[-1][0], row_embeds[-1][1], prev_rowsum_h, prrev_rowsum_c, fn_ids, self.merge_cell) row_embeds.append(new_states) h_list, c_list = zip(*row_embeds) joint_h = torch.cat(h_list, dim=0) joint_c = torch.cat(c_list, dim=0) # get history representation init_select, all_ids, last_tos, next_ids, pos_info = TreeLib.PrepareRowSummary( ) cur_state = (joint_h[init_select], joint_c[init_select]) ret_state = (joint_h[next_ids], joint_c[next_ids]) hist_rnn_states = [] hist_froms = [] hist_tos = [] for i, (done_from, done_to, proceed_from, proceed_input) in enumerate(all_ids): hist_froms.append(done_from) hist_tos.append(done_to) hist_rnn_states.append(cur_state) next_input = joint_h[proceed_input], joint_c[proceed_input] sub_state = cur_state[0][proceed_from], cur_state[1][proceed_from] cur_state = self.summary_cell(sub_state, next_input) hist_rnn_states.append(cur_state) hist_froms.append(None) hist_tos.append(last_tos) hist_h_list, hist_c_list = zip(*hist_rnn_states) pos_embed = self.pos_enc(pos_info) row_h = multi_index_select(hist_froms, hist_tos, * hist_h_list) + pos_embed row_c = multi_index_select(hist_froms, hist_tos, * hist_c_list) + pos_embed return (row_h, row_c), ret_state
def tree_state_select(h_bot, c_bot, h_buf, c_buf, fn_all_ids): bot_froms, bot_tos, prev_froms, prev_tos = fn_all_ids() if h_buf is None or prev_tos is None: h_vecs = multi_index_select([bot_froms], [bot_tos], h_bot) c_vecs = multi_index_select([bot_froms], [bot_tos], c_bot) elif h_bot is None or bot_tos is None: h_vecs = multi_index_select([prev_froms], [prev_tos], h_buf) c_vecs = multi_index_select([prev_froms], [prev_tos], c_buf) else: h_vecs, c_vecs = hc_multi_select([bot_froms, prev_froms], [bot_tos, prev_tos], [h_bot, h_buf], [c_bot, c_buf]) return h_vecs, c_vecs
def forward_train(self, graph_ids, list_node_starts=None, num_nodes=-1, prev_rowsum_states=[None, None], list_col_ranges=None): fn_hc_bot, h_buf_list, c_buf_list = self.forward_row_trees(graph_ids, list_node_starts, num_nodes, list_col_ranges) row_states, next_states = self.row_tree.forward_train(*(fn_hc_bot(0)), h_buf_list[0], c_buf_list[0], *prev_rowsum_states) # make prediction logit_has_edge = self.pred_has_ch(row_states[0]) has_ch, _ = TreeLib.GetChLabel(0, dtype=np.bool) ll = self.binary_ll(logit_has_edge, has_ch) # has_ch_idx cur_states = (row_states[0][has_ch], row_states[1][has_ch]) lv = 0 while True: is_nonleaf = TreeLib.QueryNonLeaf(lv) if is_nonleaf is None or np.sum(is_nonleaf) == 0: break cur_states = (cur_states[0][is_nonleaf], cur_states[1][is_nonleaf]) left_logits = self.pred_has_left(cur_states[0], lv) has_left, num_left = TreeLib.GetChLabel(-1, lv) left_update = self.topdown_left_embed[has_left] + self.tree_pos_enc(num_left) left_ll, float_has_left = self.binary_ll(left_logits, has_left, need_label=True, reduction='sum') ll = ll + left_ll cur_states = self.cell_topdown(left_update, cur_states, lv) left_ids = TreeLib.GetLeftRootStates(lv) h_bot, c_bot = fn_hc_bot(lv + 1) if lv + 1 < len(h_buf_list): h_next_buf, c_next_buf = h_buf_list[lv + 1], c_buf_list[lv + 1] else: h_next_buf = c_next_buf = None left_subtree_states = tree_state_select(h_bot, c_bot, h_next_buf, c_next_buf, lambda: left_ids) has_right, num_right = TreeLib.GetChLabel(1, lv) right_pos = self.tree_pos_enc(num_right) left_subtree_states = [x + right_pos for x in left_subtree_states] topdown_state = self.l2r_cell(cur_states, left_subtree_states, lv) right_logits = self.pred_has_right(topdown_state[0], lv) right_update = self.topdown_right_embed[has_right] topdown_state = self.cell_topright(right_update, topdown_state, lv) right_ll = self.binary_ll(right_logits, has_right, reduction='none') * float_has_left ll = ll + torch.sum(right_ll) lr_ids = TreeLib.GetLeftRightSelect(lv, np.sum(has_left), np.sum(has_right)) new_states = [] for i in range(2): new_s = multi_index_select([lr_ids[0], lr_ids[2]], [lr_ids[1], lr_ids[3]], cur_states[i], topdown_state[i]) new_states.append(new_s) cur_states = tuple(new_states) lv += 1 return ll, next_states