Пример #1
0
def run(args, local_rank):
    """ Distributed Synchronous """
    torch.manual_seed(1234)
    vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
    if (args.world_size == 1 or dist.get_rank() == 0):
        print ("vocab.size = %d"%vocab.size, flush=True)
    model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,\
                  args.num_heads, args.dropout, args.layers, args.smoothing, args.approx)
    if args.start_from is not None:
        ckpt = torch.load(args.start_from, map_location='cpu')
        model.load_state_dict(ckpt['model'])
    model = model.cuda(local_rank)
   
    if args.world_size > 1:
        torch.manual_seed(1234 + dist.get_rank())
        random.seed(5678 + dist.get_rank())
    
    optimizer = Optim(model.embed_dim, args.lr, args.warmup_steps, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.998), eps=1e-9))

    if args.start_from is not None:
        optimizer.load_state_dict(ckpt['optimizer'])

    #train_data = DataLoader(vocab, args.train_data+"0"+str(local_rank), args.batch_size, args.max_len, args.min_len)
    train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len, args.min_len)
    batch_acm = 0
    acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
    while True:
        model.train()
        for truth, inp, msk in train_data:
            batch_acm += 1
            truth = truth.cuda(local_rank)
            inp = inp.cuda(local_rank)
            msk = msk.cuda(local_rank)

            model.zero_grad()
            res, loss, acc, nll, ppl, ntokens, npairs = model(truth, inp, msk)
            loss_acm += loss.item()
            acc_acm += acc
            nll_acm += nll
            ppl_acm += ppl
            ntokens_acm += ntokens
            npairs_acm += npairs
            nxs += npairs
            
            loss.backward()
            if args.world_size > 1:
                average_gradients(model)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
                print ('batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'\
                        %(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, \
                        nll_acm/nxs, ppl_acm/nxs, npairs_acm, optimizer._rate), flush=True)
                acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
                if not os.path.exists(args.save_dir):
                    os.mkdir(args.save_dir)
                torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm))
Пример #2
0
def run(args, local_rank):
    """ Distributed Synchronous """
    torch.manual_seed(1234)
    vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
    if (args.world_size == 1 or dist.get_rank() == 0):
        print("vocab.size = " + str(vocab.size), flush=True)
    model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,
                  args.num_heads, args.dropout, args.layers, args.smoothing)
    if args.start_from is not None:
        ckpt = torch.load(args.start_from, map_location='cpu')
        model.load_state_dict(ckpt['model'])
    model = model.cuda(local_rank)

    optimizer = Optim(
        model.embed_dim, args.lr, args.warmup_steps,
        torch.optim.Adam(model.parameters(),
                         lr=0,
                         betas=(0.9, 0.998),
                         eps=1e-9))

    if args.start_from is not None:
        optimizer.load_state_dict(ckpt['optimizer'])

    train_data = DataLoader(vocab, args.train_data, args.batch_size,
                            args.max_len, args.min_len)
    batch_acm = 0
    acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
    while True:
        model.train()
        if train_data.epoch_id > args.max_epoch:
            break
        for xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg, ys_pos, msk in train_data:
            batch_acm += 1
            xs_tpl = xs_tpl.cuda(local_rank)
            xs_seg = xs_seg.cuda(local_rank)
            xs_pos = xs_pos.cuda(local_rank)
            ys_truth = ys_truth.cuda(local_rank)
            ys_inp = ys_inp.cuda(local_rank)
            ys_tpl = ys_tpl.cuda(local_rank)
            ys_seg = ys_seg.cuda(local_rank)
            ys_pos = ys_pos.cuda(local_rank)
            msk = msk.cuda(local_rank)

            model.zero_grad()
            res, loss, acc, nll, ppl, ntokens, npairs = model(
                xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg,
                ys_pos, msk)

            # http://www.myzaker.com/article/5f3747a28e9f096c723a65e0/ 资料
            # 常用的文本生成评测指标 PPL、Distinct 外,
            # 本文还专门设计了衡量格式(Format)准确率、韵律(Rhyme)准确率和句子完整性(integrity)的指标。
            # 格式(Format)准确率: Precision p、Recall r 和 F1 得分-> Macro-F1 和 Micro-F1
            # 完整性有个奇怪的log值
            # 传统的BLEU和ROUGE, 再songnet中完全用不到, 创作要求多样性
            loss_acm += loss.item()  # 损失
            acc_acm += acc  # 精确度
            nll_acm += nll  #
            ppl_acm += ppl  # -log 和, 其实就是句子出现的概率, 越小, 困惑度越高
            # 新指标, 困惑度perplexity, 比较两者再预测样本上的优劣, 困惑都越低越好??, 咋定义的
            ntokens_acm += ntokens  # 字符数
            npairs_acm += npairs  # 句子?
            nxs += npairs

            # 为什么啊, 感觉好难啊gpt2

            loss.backward()
            if args.world_size > 1:
                is_normal = average_gradients(model)
            else:
                is_normal = True
            if is_normal:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
            else:
                print("gradient: none, gpu: " + str(local_rank), flush=True)
                continue
            if (args.world_size == 1 or dist.get_rank() == 0
                ) and batch_acm % args.print_every == -1 % args.print_every:
                today = datetime.datetime.now()
                print(today)
                print(
                    'batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'
                    % (batch_acm, loss_acm / args.print_every,
                       acc_acm / ntokens_acm, nll_acm / nxs, ppl_acm / nxs,
                       npairs_acm, optimizer._rate),
                    flush=True)
                acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
            if (args.world_size == 1 or dist.get_rank() == 0
                ) and batch_acm % args.save_every == -1 % args.save_every:
                if not os.path.exists(args.save_dir):
                    os.mkdir(args.save_dir)

                model.eval()
                eval_epoch(
                    args, model, vocab, local_rank, "epoch-" +
                    str(train_data.epoch_id) + "-acm-" + str(batch_acm))
                model.train()

                torch.save(
                    {
                        'args': args,
                        'model': model.state_dict(),
                        'optimizer': optimizer.state_dict()
                    }, '%s/epoch%d_batch_%d' %
                    (args.save_dir, train_data.epoch_id, batch_acm))
Пример #3
0
def run(args, local_rank):
    """ Distributed Synchronous """
    torch.manual_seed(1234)
    vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
    if (args.world_size == 1 or dist.get_rank() == 0):
        print (vocab.size)
    model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim, args.num_heads, args.dropout, args.layers, args.approx)
    if args.start_from is not None:
        ckpt = torch.load(args.start_from, map_location='cpu')
        model.load_state_dict(ckpt['model'])
    model = model.cuda(local_rank)
   
    weight_decay_params = []
    no_weight_decay_params = []
    
    for name, param in model.named_parameters():
        if name.endswith('bias') or 'layer_norm' in name:
            no_weight_decay_params.append(param)
        else:
            weight_decay_params.append(param)
    grouped_params = [{'params':weight_decay_params, 'weight_decay':0.01},
                        {'params':no_weight_decay_params, 'weight_decay':0.}]
    if args.world_size > 1:
        torch.manual_seed(1234 + dist.get_rank())
        random.seed(5678 + dist.get_rank())
    
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        optimizer = FusedAdam(grouped_params,
                              lr=args.lr,
                              betas=(0.9, 0.999),
                              eps =1e-6,
                              bias_correction=False,
                              max_grad_norm=1.0)
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)

    else:
        optimizer = AdamWeightDecayOptimizer(grouped_params,
                           lr=args.lr, betas=(0.9, 0.999), eps=1e-6)
    if args.start_from is not None:
        optimizer.load_state_dict(ckpt['optimizer'])

    train_data = DataLoader(vocab, args.train_data, args.batch_size, args.max_len)
    batch_acm = 0
    acc_acm, ntokens_acm, npairs_acm, loss_acm = 0., 0., 0., 0.
    while True:
        model.train()
        for truth, inp, msk in train_data:
            batch_acm += 1
            if batch_acm <= args.warmup_steps:
                update_lr(optimizer, args.lr*batch_acm/args.warmup_steps)
            truth = truth.cuda(local_rank)
            inp = inp.cuda(local_rank)
            msk = msk.cuda(local_rank)

            optimizer.zero_grad()
            res, loss, acc, ntokens, npairs = model(truth, inp, msk)
            loss_acm += loss.item()
            acc_acm += acc
            ntokens_acm += ntokens
            npairs_acm += npairs
            if args.fp16:
                optimizer.backward(loss)
            else:
                loss.backward()
            if args.world_size > 1:
                average_gradients(model)
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.print_every == -1%args.print_every:
                print ('batch_acm %d, loss %.3f, acc %.3f, x_acm %d'%(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, npairs_acm))
                acc_acm, ntokens_acm, loss_acm = 0., 0., 0.
            if (args.world_size==1 or dist.get_rank() ==0) and batch_acm%args.save_every == -1%args.save_every:
                if not os.path.exists(args.save_dir):
                    os.mkdir(args.save_dir)
                torch.save({'args':args, 'model':model.state_dict(), 'optimizer':optimizer.state_dict()}, '%s/epoch%d_batch_%d'%(args.save_dir, train_data.epoch_id, batch_acm))
Пример #4
0
def run(args, local_rank):
    """ Distributed Synchronous """
    torch.manual_seed(1234)
    vocab = Vocab(args.vocab, min_occur_cnt=args.min_occur_cnt, specials=[])
    if (args.world_size == 1 or dist.get_rank() == 0):
        print("vocab.size = " + str(vocab.size), flush=True)
    model = BIGLM(local_rank, vocab, args.embed_dim, args.ff_embed_dim,\
                  args.num_heads, args.dropout, args.layers, args.smoothing)
    if args.start_from is not None:
        ckpt = torch.load(args.start_from, map_location='cpu')
        model.load_state_dict(ckpt['model'])
    model = model.cuda(local_rank)

    optimizer = Optim(
        model.embed_dim, args.lr, args.warmup_steps,
        torch.optim.Adam(model.parameters(),
                         lr=0,
                         betas=(0.9, 0.998),
                         eps=1e-9))

    if args.start_from is not None:
        optimizer.load_state_dict(ckpt['optimizer'])

    train_data = DataLoader(vocab, args.train_data, args.batch_size,
                            args.max_len, args.min_len)
    batch_acm = 0
    acc_acm, nll_acm, ppl_acm, ntokens_acm, nxs, npairs_acm, loss_acm = 0., 0., 0., 0., 0., 0., 0.
    while True:
        model.train()
        if train_data.epoch_id > 30:
            break
        for xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg, ys_pos, msk in train_data:
            batch_acm += 1
            xs_tpl = xs_tpl.cuda(local_rank)
            xs_seg = xs_seg.cuda(local_rank)
            xs_pos = xs_pos.cuda(local_rank)
            ys_truth = ys_truth.cuda(local_rank)
            ys_inp = ys_inp.cuda(local_rank)
            ys_tpl = ys_tpl.cuda(local_rank)
            ys_seg = ys_seg.cuda(local_rank)
            ys_pos = ys_pos.cuda(local_rank)
            msk = msk.cuda(local_rank)

            model.zero_grad()
            res, loss, acc, nll, ppl, ntokens, npairs = model(
                xs_tpl, xs_seg, xs_pos, ys_truth, ys_inp, ys_tpl, ys_seg,
                ys_pos, msk)
            loss_acm += loss.item()
            acc_acm += acc
            nll_acm += nll
            ppl_acm += ppl
            ntokens_acm += ntokens
            npairs_acm += npairs
            nxs += npairs

            loss.backward()
            if args.world_size > 1:
                is_normal = average_gradients(model)
            else:
                is_normal = True
            if is_normal:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
            else:
                print("gradient: none, gpu: " + str(local_rank), flush=True)
                continue
            if (args.world_size == 1 or dist.get_rank() == 0
                ) and batch_acm % args.print_every == -1 % args.print_every:
                print ('batch_acm %d, loss %.3f, acc %.3f, nll %.3f, ppl %.3f, x_acm %d, lr %.6f'\
                        %(batch_acm, loss_acm/args.print_every, acc_acm/ntokens_acm, \
                        nll_acm/nxs, ppl_acm/nxs, npairs_acm, optimizer._rate), flush=True)
                acc_acm, nll_acm, ppl_acm, ntokens_acm, loss_acm, nxs = 0., 0., 0., 0., 0., 0.
            if (args.world_size == 1 or dist.get_rank() == 0
                ) and batch_acm % args.save_every == -1 % args.save_every:
                if not os.path.exists(args.save_dir):
                    os.mkdir(args.save_dir)

                model.eval()
                eval_epoch(
                    args, model, vocab, local_rank, "epoch-" +
                    str(train_data.epoch_id) + "-acm-" + str(batch_acm))
                model.train()

                torch.save(
                    {
                        'args': args,
                        'model': model.state_dict(),
                        'optimizer': optimizer.state_dict()
                    }, '%s/epoch%d_batch_%d' %
                    (args.save_dir, train_data.epoch_id, batch_acm))