Пример #1
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    linear_regression = None
    linear_regressions = None
    # no multi-label support at present

    # variables from command-line options
    resume = args.resume_
    linear_regression_ids = args.linear_regression_ids_
    output = args.predictions
    # there's only one linear regression to be generated at present
    args.max_parallel_linear_regressions = 1
    # linear regressions cannot be published yet.
    args.public_linear_regression = False

    # It is compulsory to have a description to publish either datasets or
    # linear regressions
    if (not args.description_
            and (args.public_linear_regression or args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(api, args, resume, source,
                                              csv_properties, fields,
                                              session_file, path, log)
    (_, datasets, test_dataset, resume, csv_properties,
     fields) = dataset_properties
    if datasets:
        # Now we have a dataset, let's check if there's an objective_field
        # given by the user and update it in the fields structure
        args.objective_id_ = get_objective_id(args, fields)
    if args.linear_file:
        # linear regression is retrieved from the contents of the given local
        # JSON file
        linear_regression, csv_properties, fields = u.read_local_resource(
            args.linear_file, csv_properties=csv_properties)
        linear_regressions = [linear_regression]
        linear_regression_ids = [linear_regression['resource']]
    else:
        # linear regression is retrieved from the remote object
        linear_regressions, linear_regression_ids, resume = \
            plr.linear_regressions_processing( \
            datasets, linear_regressions, linear_regression_ids, \
            api, args, resume, fields=fields, \
            session_file=session_file, path=path, log=log)
        if linear_regressions:
            linear_regression = linear_regressions[0]

    # We update the linear regression's public state if needed
    if linear_regression:
        if isinstance(linear_regression, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            linear_regression = u.check_resource(linear_regression,
                                                 api.get_linear_regression,
                                                 query_string=query_string)
        linear_regressions[0] = linear_regression
        if (args.public_linear_regression
                or (args.shared_flag
                    and r.shared_changed(args.shared, linear_regression))):
            linear_regression_args = {}
            if args.shared_flag and r.shared_changed(args.shared,
                                                     linear_regression):
                linear_regression_args.update(shared=args.shared)
            if args.public_linear_regression:
                linear_regression_args.update( \
                    r.set_publish_linear_regression_args(args))
            if linear_regression_args:
                linear_regression = r.update_linear_regression( \
                    linear_regression, linear_regression_args, args,
                    api=api, path=path, \
                    session_file=session_file)
                linear_regressions[0] = linear_regression

    # We get the fields of the linear_regression if we haven't got
    # them yet and need them
    if linear_regression and (args.test_set or args.export_fields):
        fields = plr.get_linear_fields( \
            linear_regression, csv_properties, args)

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    # If predicting
    if linear_regressions and (a.has_test(args) or \
            (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = r.set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            batch_prediction_args = r.set_batch_prediction_args(
                args, fields=fields, dataset_fields=test_fields)

            remote_prediction(linear_regression, test_dataset, \
                batch_prediction_args, args, \
                api, resume, prediction_file=output, \
                session_file=session_file, path=path, log=log)

        else:
            prediction(linear_regressions,
                       fields,
                       args,
                       session_file=session_file)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
        if args.dataset_off and not args.has_test_datasets_:
            args.test_dataset_ids = datasets
        if args.test_dataset_ids and args.dataset_off:
            # Evaluate the models with the corresponding test datasets.
            test_dataset_id = bigml.api.get_dataset_id( \
                args.test_dataset_ids[0])
            test_dataset = api.check_resource(test_dataset_id)
            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            resume = evaluate(linear_regressions,
                              args.test_dataset_ids,
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=test_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)
        else:
            dataset = datasets[0]
            if args.test_split > 0 or args.has_test_datasets_:
                dataset = test_dataset
            dataset = u.check_resource(dataset,
                                       api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate(linear_regressions, [dataset],
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=dataset_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Пример #2
0
def compute_output(api, args):
    """ Creates a fusion using the `models` list or uses the ids
    of a previously created BigML fusion to make predictions for the `test_set`.

    """

    fusion = None

    # variables from command-line options
    resume = args.resume_
    fusion_ids = args.fusion_ids_
    output = args.predictions
    # there's only one fusion to be generated at present
    args.max_parallel_fusions = 1
    # fusion cannot be published yet.
    args.public_fusion = False

    # It is compulsory to have a description to publish either datasets or
    # fusions
    if (not args.description_ and args.public_fusion):
        sys.exit("You should provide a description to publish.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    if args.fusion_file:
        # fusion regression is retrieved from the contents of the given local
        # JSON file
        fusion, csv_properties, fields = u.read_local_resource(
            args.fusion_file, csv_properties=csv_properties)
        fusion_ids = [fusion]
    else:
        # fusion is retrieved from the remote object or created
        fusion, resume = \
            pf.fusion_processing( \
            fusion, fusion_ids, \
            api, args, resume, \
            session_file=session_file, path=path, log=log)

    # We update the fusion public state if needed
    if fusion:
        if isinstance(fusion, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            fusion = u.check_resource(fusion,
                                      api.get_fusion,
                                      query_string=query_string)
        if (args.public_fusion or
            (args.shared_flag and r.shared_changed(args.shared, fusion))):
            fusion_args = {}
            if args.shared_flag and r.shared_changed(args.shared, fusion):
                fusion_args.update(shared=args.shared)
            if args.public_fusion:
                fusion_args.update( \
                    r.set_publish_fusion_args(args))
            if fusion_args:
                fusion = r.update_fusion( \
                    fusion, fusion_args, args,
                    api=api, path=path, \
                    session_file=session_file)

    # We get the fields of the fusion if we haven't got
    # them yet and need them
    if fusion and (args.test_set or args.evaluate):
        fields = pf.get_fusion_fields( \
            fusion, csv_properties, args)

    # If predicting
    if fusion and (a.has_test(args) or \
            args.remote):
        test_dataset = get_test_dataset(args)

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api,
                    args,
                    resume,
                    name=test_name,
                    session_file=session_file,
                    path=path,
                    log=log)
                (test_source, resume, csv_properties,
                 test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = r.set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source,
                    "test",
                    dataset_args,
                    api,
                    args,
                    resume,
                    session_file=session_file,
                    path=path,
                    log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset, csv_properties)
            if not args.evaluate:
                batch_prediction_args = r.set_batch_prediction_args(
                    args, fields=fields, dataset_fields=test_fields)

                remote_prediction(fusion, test_dataset, \
                    batch_prediction_args, args, \
                    api, resume, prediction_file=output, \
                    session_file=session_file, path=path, log=log)

        else:
            prediction([fusion], fields, args, session_file=session_file)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        args.max_parallel_evaluations = 1  # only one evaluation at present
        args.cross_validation_rate = 0  # no cross-validation
        args.number_of_evaluations = 1  # only one evaluation
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
            dataset = test_dataset
            dataset = u.check_resource(dataset,
                                       api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate([fusion], [dataset],
                              api,
                              args,
                              resume,
                              fields=fields,
                              dataset_fields=dataset_fields,
                              session_file=session_file,
                              path=path,
                              log=log,
                              objective_field=args.objective_field)

    u.print_generated_files(path,
                            log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Пример #3
0
def compute_output(api, args):
    """ Creates a fusion using the `models` list or uses the ids
    of a previously created BigML fusion to make predictions for the `test_set`.

    """

    fusion = None

    # variables from command-line options
    resume = args.resume_
    fusion_ids = args.fusion_ids_
    output = args.predictions
    # there's only one fusion to be generated at present
    args.max_parallel_fusions = 1
    # fusion cannot be published yet.
    args.public_fusion = False

    # It is compulsory to have a description to publish either datasets or
    # fusions
    if (not args.description_ and args.public_fusion):
        sys.exit("You should provide a description to publish.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    if args.fusion_file:
        # fusion regression is retrieved from the contents of the given local
        # JSON file
        fusion, csv_properties, fields = u.read_local_resource(
            args.fusion_file,
            csv_properties=csv_properties)
        fusion_ids = [fusion]
    else:
        # fusion is retrieved from the remote object or created
        fusion, resume = \
            pf.fusion_processing( \
            fusion, fusion_ids, \
            api, args, resume, \
            session_file=session_file, path=path, log=log)

    # We update the fusion public state if needed
    if fusion:
        if isinstance(fusion, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            fusion = u.check_resource(fusion,
                                      api.get_fusion,
                                      query_string=query_string)
        if (args.public_fusion or
                (args.shared_flag and r.shared_changed(args.shared,
                                                       fusion))):
            fusion_args = {}
            if args.shared_flag and r.shared_changed(args.shared,
                                                     fusion):
                fusion_args.update(shared=args.shared)
            if args.public_fusion:
                fusion_args.update( \
                    r.set_publish_fusion_args(args))
            if fusion_args:
                fusion = r.update_fusion( \
                    fusion, fusion_args, args,
                    api=api, path=path, \
                    session_file=session_file)

    # We get the fields of the fusion if we haven't got
    # them yet and need them
    if fusion and (args.test_set or args.evaluate):
        fields = pf.get_fusion_fields( \
            fusion, csv_properties, args)


    # If predicting
    if fusion and (a.has_test(args) or \
            args.remote):
        test_dataset = get_test_dataset(args)

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api, args, resume, name=test_name,
                    session_file=session_file, path=path, log=log)
                (test_source, resume,
                 csv_properties, test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = r.set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source, "test", dataset_args, api, args,
                    resume, session_file=session_file, path=path, log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset,
                                                  csv_properties)
            if not args.evaluate:
                batch_prediction_args = r.set_batch_prediction_args(
                    args, fields=fields,
                    dataset_fields=test_fields)

                remote_prediction(fusion, test_dataset, \
                    batch_prediction_args, args, \
                    api, resume, prediction_file=output, \
                    session_file=session_file, path=path, log=log)

        else:
            prediction([fusion], fields, args,
                       session_file=session_file)


    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        args.max_parallel_evaluations = 1 # only one evaluation at present
        args.cross_validation_rate = 0 # no cross-validation
        args.number_of_evaluations = 1 # only one evaluation
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
            dataset = test_dataset
            dataset = u.check_resource(dataset, api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate([fusion], [dataset], api,
                              args, resume,
                              fields=fields, dataset_fields=dataset_fields,
                              session_file=session_file, path=path,
                              log=log,
                              objective_field=args.objective_field)


    u.print_generated_files(path, log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)
Пример #4
0
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """

    linear_regression = None
    linear_regressions = None
    # no multi-label support at present

    # variables from command-line options
    resume = args.resume_
    linear_regression_ids = args.linear_regression_ids_
    output = args.predictions
    # there's only one linear regression to be generated at present
    args.max_parallel_linear_regressions = 1
    # linear regressions cannot be published yet.
    args.public_linear_regression = False

    # It is compulsory to have a description to publish either datasets or
    # linear regressions
    if (not args.description_ and (args.public_linear_regression or
                                   args.public_dataset)):
        sys.exit("You should provide a description to publish.")

    # When using --new-fields, it is compulsory to specify also a dataset
    # id
    if args.new_fields and not args.dataset:
        sys.exit("To use --new-fields you must also provide a dataset id"
                 " to generate the new dataset from it.")

    path = u.check_dir(output)
    session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # basic pre-model step: creating or retrieving the source related info
    source, resume, csv_properties, fields = pms.get_source_info(
        api, args, resume, csv_properties, session_file, path, log)
    # basic pre-model step: creating or retrieving the dataset related info
    dataset_properties = pms.get_dataset_info(
        api, args, resume, source,
        csv_properties, fields, session_file, path, log)
    (_, datasets, test_dataset,
     resume, csv_properties, fields) = dataset_properties
    if datasets:
        # Now we have a dataset, let's check if there's an objective_field
        # given by the user and update it in the fields structure
        args.objective_id_ = get_objective_id(args, fields)
    if args.linear_file:
        # linear regression is retrieved from the contents of the given local
        # JSON file
        linear_regression, csv_properties, fields = u.read_local_resource(
            args.linear_file,
            csv_properties=csv_properties)
        linear_regressions = [linear_regression]
        linear_regression_ids = [linear_regression['resource']]
    else:
        # linear regression is retrieved from the remote object
        linear_regressions, linear_regression_ids, resume = \
            plr.linear_regressions_processing( \
            datasets, linear_regressions, linear_regression_ids, \
            api, args, resume, fields=fields, \
            session_file=session_file, path=path, log=log)
        if linear_regressions:
            linear_regression = linear_regressions[0]

    # We update the linear regression's public state if needed
    if linear_regression:
        if isinstance(linear_regression, basestring):
            if not a.has_test(args):
                query_string = MINIMUM_MODEL
            elif args.export_fields:
                query_string = r.ALL_FIELDS_QS
            else:
                query_string = ''
            linear_regression = u.check_resource(linear_regression,
                                                 api.get_linear_regression,
                                                 query_string=query_string)
        linear_regressions[0] = linear_regression
        if (args.public_linear_regression or
                (args.shared_flag and r.shared_changed(args.shared,
                                                       linear_regression))):
            linear_regression_args = {}
            if args.shared_flag and r.shared_changed(args.shared,
                                                     linear_regression):
                linear_regression_args.update(shared=args.shared)
            if args.public_linear_regression:
                linear_regression_args.update( \
                    r.set_publish_linear_regression_args(args))
            if linear_regression_args:
                linear_regression = r.update_linear_regression( \
                    linear_regression, linear_regression_args, args,
                    api=api, path=path, \
                    session_file=session_file)
                linear_regressions[0] = linear_regression

    # We get the fields of the linear_regression if we haven't got
    # them yet and need them
    if linear_regression and (args.test_set or args.export_fields):
        fields = plr.get_linear_fields( \
            linear_regression, csv_properties, args)

    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))

    # If predicting
    if linear_regressions and (a.has_test(args) or \
            (test_dataset and args.remote)):
        if test_dataset is None:
            test_dataset = get_test_dataset(args)

        # Remote predictions: predictions are computed as batch predictions
        # in bigml.com except when --no-batch flag is set on
        if args.remote and not args.no_batch:
            # create test source from file
            test_name = "%s - test" % args.name
            if args.test_source is None:
                test_properties = ps.test_source_processing(
                    api, args, resume, name=test_name,
                    session_file=session_file, path=path, log=log)
                (test_source, resume,
                 csv_properties, test_fields) = test_properties
            else:
                test_source_id = bigml.api.get_source_id(args.test_source)
                test_source = api.check_resource(test_source_id)
            if test_dataset is None:
                # create test dataset from test source
                dataset_args = r.set_basic_dataset_args(args, name=test_name)
                test_dataset, resume = pd.alternative_dataset_processing(
                    test_source, "test", dataset_args, api, args,
                    resume, session_file=session_file, path=path, log=log)
            else:
                test_dataset_id = bigml.api.get_dataset_id(test_dataset)
                test_dataset = api.check_resource(test_dataset_id)

            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset,
                                                  csv_properties)
            batch_prediction_args = r.set_batch_prediction_args(
                args, fields=fields,
                dataset_fields=test_fields)

            remote_prediction(linear_regression, test_dataset, \
                batch_prediction_args, args, \
                api, resume, prediction_file=output, \
                session_file=session_file, path=path, log=log)

        else:
            prediction(linear_regressions, fields, args,
                       session_file=session_file)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        # When we resume evaluation and models were already completed, we
        # should use the datasets array as test datasets
        if args.has_test_datasets_:
            test_dataset = get_test_dataset(args)
        if args.dataset_off and not args.has_test_datasets_:
            args.test_dataset_ids = datasets
        if args.test_dataset_ids and args.dataset_off:
            # Evaluate the models with the corresponding test datasets.
            test_dataset_id = bigml.api.get_dataset_id( \
                args.test_dataset_ids[0])
            test_dataset = api.check_resource(test_dataset_id)
            csv_properties.update(objective_field=None,
                                  objective_field_present=False)
            test_fields = pd.get_fields_structure(test_dataset,
                                                  csv_properties)
            resume = evaluate(linear_regressions, args.test_dataset_ids, api,
                              args, resume,
                              fields=fields, dataset_fields=test_fields,
                              session_file=session_file, path=path,
                              log=log,
                              objective_field=args.objective_field)
        else:
            dataset = datasets[0]
            if args.test_split > 0 or args.has_test_datasets_:
                dataset = test_dataset
            dataset = u.check_resource(dataset, api=api,
                                       query_string=r.ALL_FIELDS_QS)
            dataset_fields = pd.get_fields_structure(dataset, None)
            resume = evaluate(linear_regressions, [dataset], api,
                              args, resume,
                              fields=fields, dataset_fields=dataset_fields,
                              session_file=session_file, path=path,
                              log=log,
                              objective_field=args.objective_field)


    u.print_generated_files(path, log_file=session_file,
                            verbosity=args.verbosity)
    if args.reports:
        clear_reports(path)
        if args.upload:
            upload_reports(args.reports, path)