Пример #1
0
    mlp = lasagne.layers.BatchNormLayer(mlp)
    test_output = lasagne.layers.get_output(mlp, deterministic=True)
    test_err = T.mean(T.neq(T.argmax(test_output, axis=1), target),dtype=theano.config.floatX)

    # Compile a second function computing the validation loss and accuracy:
    val_fn = theano.function([input, target], test_err)
    
    print("Loading the trained parameters and binarizing the weights...")

    # Load parameters
    with np.load('mnist_parameters.npz') as f:
        param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(mlp, param_values)

    # Binarize the weights
    params = lasagne.layers.get_all_params(mlp)
    for param in params:
        # print param.name
        if param.name == "W":
            param.set_value(binary_ops.SignNumpy(param.get_value()))
    
    print('Running...')
    
    start_time = time.time()
    
    test_error = val_fn(test_set.X,test_set.y)*100.
    print "test_error = " + str(test_error) + "%"
    
    run_time = time.time() - start_time
    print("run_time = "+str(run_time)+"s")
    
Пример #2
0
    print("Loading the trained parameters and binarizing the weights...")

    # Load parameters
    with np.load('mnist_parameters.npz') as f:
        param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(mlp, param_values)

    # Binarize the weights
    weights_count = 0
    params = lasagne.layers.get_all_params(mlp)
    for param in params:
        print(param.name)
        if param.name == "W":
            orig_weights = param.get_value()
            param.set_value(binary_ops.SignNumpy(orig_weights))
            weights_count = weights_count + len(orig_weights.reshape(-1))
        print(param.get_value())

    # Print some stats
    total_params_count = lasagne.layers.count_params(mlp)
    weights_needed_bytes_count = weights_count / 8
    non_weights_needed_bytes_count = total_params_count * 4 - weights_count / 8
    print(
        'The model has a total of %d parameters of which %d (the weights) are binary.'
        % (total_params_count, weights_count))
    print('Space requirements:')
    print('  - %d bytes for the weights' % weights_needed_bytes_count)
    print('  - %d bytes for the other parameters (assumed 32bit floats each)' %
          non_weights_needed_bytes_count)
    print('  = %d bytes' %