def main(seed=0, n_train=60000, n_test=10000, kernel_size=(16, ), stride=(4, ), n_filters=25, padding=0, inhib=100, time=25, lr=1e-3, lr_decay=0.99, dt=1, intensity=1, progress_interval=10, update_interval=250, plot=False, train=True, gpu=False): assert n_train % update_interval == 0 and n_test % update_interval == 0, \ 'No. examples must be divisible by update_interval' params = [ seed, n_train, kernel_size, stride, n_filters, padding, inhib, time, lr, lr_decay, dt, intensity, update_interval ] model_name = '_'.join([str(x) for x in params]) if not train: test_params = [ seed, n_train, n_test, kernel_size, stride, n_filters, padding, inhib, time, lr, lr_decay, dt, intensity, update_interval ] np.random.seed(seed) if gpu: torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) n_examples = n_train if train else n_test input_shape = [20, 20] if kernel_size == input_shape: conv_size = [1, 1] else: conv_size = (int((input_shape[0] - kernel_size[0]) / stride[0]) + 1, int((input_shape[1] - kernel_size[1]) / stride[1]) + 1) n_classes = 10 n_neurons = n_filters * np.prod(conv_size) total_kernel_size = int(np.prod(kernel_size)) total_conv_size = int(np.prod(conv_size)) # Build network. if train: network = Network() input_layer = Input(n=400, shape=(1, 1, 20, 20), traces=True) conv_layer = DiehlAndCookNodes(n=n_filters * total_conv_size, shape=(1, n_filters, *conv_size), thresh=-64.0, traces=True, theta_plus=0.05 * (kernel_size[0] / 20), refrac=0) conv_layer2 = LIFNodes(n=n_filters * total_conv_size, shape=(1, n_filters, *conv_size), refrac=0) conv_conn = Conv2dConnection(input_layer, conv_layer, kernel_size=kernel_size, stride=stride, update_rule=WeightDependentPostPre, norm=0.05 * total_kernel_size, nu=[0, lr], wmin=0, wmax=0.25) conv_conn2 = Conv2dConnection(input_layer, conv_layer2, w=conv_conn.w, kernel_size=kernel_size, stride=stride, update_rule=None, wmax=0.25) w = -inhib * torch.ones(n_filters, conv_size[0], conv_size[1], n_filters, conv_size[0], conv_size[1]) for f in range(n_filters): for f2 in range(n_filters): if f != f2: w[f, :, :f2, :, :] = 0 w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1]) recurrent_conn = Connection(conv_layer, conv_layer, w=w) network.add_layer(input_layer, name='X') network.add_layer(conv_layer, name='Y') network.add_layer(conv_layer2, name='Y_') network.add_connection(conv_conn, source='X', target='Y') network.add_connection(conv_conn2, source='X', target='Y_') network.add_connection(recurrent_conn, source='Y', target='Y') # Voltage recording for excitatory and inhibitory layers. voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time) network.add_monitor(voltage_monitor, name='output_voltage') else: network = load_network(os.path.join(params_path, model_name + '.pt')) network.connections['X', 'Y'].update_rule = NoOp( connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu) network.layers['Y'].theta_decay = 0 network.layers['Y'].theta_plus = 0 # Load MNIST data. dataset = MNIST(data_path, download=True) if train: images, labels = dataset.get_train() else: images, labels = dataset.get_test() images *= intensity images = images[:, 4:-4, 4:-4].contiguous() # Record spikes during the simulation. spike_record = torch.zeros(update_interval, time, n_neurons) full_spike_record = torch.zeros(n_examples, n_neurons) # Neuron assignments and spike proportions. if train: logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs', max_iter=1000, multi_class='multinomial') logreg_model.coef_ = np.zeros([n_classes, n_neurons]) logreg_model.intercept_ = np.zeros(n_classes) logreg_model.classes_ = np.arange(n_classes) else: path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt') logreg_coef, logreg_intercept = torch.load(open(path, 'rb')) logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs', max_iter=1000, multi_class='multinomial') logreg_model.coef_ = logreg_coef logreg_model.intercept_ = logreg_intercept logreg_model.classes_ = np.arange(n_classes) # Sequence of accuracy estimates. curves = {'logreg': []} predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()} if train: best_accuracy = 0 spikes = {} for layer in set(network.layers): spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time) network.add_monitor(spikes[layer], name='%s_spikes' % layer) # Train the network. if train: print('\nBegin training.\n') else: print('\nBegin test.\n') inpt_ims = None inpt_axes = None spike_ims = None spike_axes = None weights_im = None plot_update_interval = 100 start = t() for i in range(n_examples): if i % progress_interval == 0: print('Progress: %d / %d (%.4f seconds)' % (i, n_examples, t() - start)) start = t() if i % update_interval == 0 and i > 0: if train: network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay if i % len(labels) == 0: current_labels = labels[-update_interval:] current_record = full_spike_record[-update_interval:] else: current_labels = labels[i % len(labels) - update_interval:i % len(labels)] current_record = full_spike_record[i % len(labels) - update_interval:i % len(labels)] # Update and print accuracy evaluations. curves, preds = update_curves(curves, current_labels, n_classes, full_spike_record=current_record, logreg=logreg_model) print_results(curves) for scheme in preds: predictions[scheme] = torch.cat( [predictions[scheme], preds[scheme]], -1) # Save accuracy curves to disk. to_write = ['train'] + params if train else ['test'] + params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb')) if train: if any([x[-1] > best_accuracy for x in curves.values()]): print( 'New best accuracy! Saving network parameters to disk.' ) # Save network to disk. network.save(os.path.join(params_path, model_name + '.pt')) path = os.path.join( params_path, '_'.join(['auxiliary', model_name]) + '.pt') torch.save((logreg_model.coef_, logreg_model.intercept_), open(path, 'wb')) best_accuracy = max([x[-1] for x in curves.values()]) # Refit logistic regression model. logreg_model = logreg_fit(full_spike_record[:i], labels[:i], logreg_model) print() # Get next input sample. image = images[i % len(images)] sample = bernoulli(datum=image, time=time, dt=dt, max_prob=1).unsqueeze(1).unsqueeze(1) inpts = {'X': sample} # Run the network on the input. network.run(inpts=inpts, time=time) network.connections['X', 'Y_'].w = network.connections['X', 'Y'].w # Add to spikes recording. spike_record[i % update_interval] = spikes['Y_'].get('s').view( time, -1) full_spike_record[i] = spikes['Y_'].get('s').view(time, -1).sum(0) # Optionally plot various simulation information. if plot and i % plot_update_interval == 0: _input = inpts['X'].view(time, 400).sum(0).view(20, 20) w = network.connections['X', 'Y'].w _spikes = { 'X': spikes['X'].get('s').view(400, time), 'Y': spikes['Y'].get('s').view(n_filters * total_conv_size, time), 'Y_': spikes['Y_'].get('s').view(n_filters * total_conv_size, time) } inpt_axes, inpt_ims = plot_input(image.view(20, 20), _input, label=labels[i % len(labels)], ims=inpt_ims, axes=inpt_axes) spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes) weights_im = plot_conv2d_weights( w, im=weights_im, wmax=network.connections['X', 'Y'].wmax) plt.pause(1e-2) network.reset_() # Reset state variables. print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)') i += 1 if i % len(labels) == 0: current_labels = labels[-update_interval:] current_record = full_spike_record[-update_interval:] else: current_labels = labels[i % len(labels) - update_interval:i % len(labels)] current_record = full_spike_record[i % len(labels) - update_interval:i % len(labels)] # Update and print accuracy evaluations. curves, preds = update_curves(curves, current_labels, n_classes, full_spike_record=current_record, logreg=logreg_model) print_results(curves) for scheme in preds: predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1) if train: if any([x[-1] > best_accuracy for x in curves.values()]): print('New best accuracy! Saving network parameters to disk.') # Save network to disk. network.save(os.path.join(params_path, model_name + '.pt')) path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt') torch.save((logreg_model.coef_, logreg_model.intercept_), open(path, 'wb')) if train: print('\nTraining complete.\n') else: print('\nTest complete.\n') print('Average accuracies:\n') for scheme in curves.keys(): print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme])))) # Save accuracy curves to disk. to_write = ['train'] + params if train else ['test'] + params to_write = [str(x) for x in to_write] f = '_'.join(to_write) + '.pt' torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb')) # Save results to disk. results = [np.mean(curves['logreg']), np.std(curves['logreg'])] to_write = params + results if train else test_params + results to_write = [str(x) for x in to_write] name = 'train.csv' if train else 'test.csv' if not os.path.isfile(os.path.join(results_path, name)): with open(os.path.join(results_path, name), 'w') as f: if train: columns = [ 'seed', 'n_train', 'kernel_size', 'stride', 'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt', 'intensity', 'update_interval', 'mean_logreg', 'std_logreg' ] header = ','.join(columns) + '\n' f.write(header) else: columns = [ 'seed', 'n_train', 'n_test', 'kernel_size', 'stride', 'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt', 'intensity', 'update_interval', 'mean_logreg', 'std_logreg' ] header = ','.join(columns) + '\n' f.write(header) with open(os.path.join(results_path, name), 'a') as f: f.write(','.join(to_write) + '\n') if labels.numel() > n_examples: labels = labels[:n_examples] else: while labels.numel() < n_examples: if 2 * labels.numel() > n_examples: labels = torch.cat( [labels, labels[:n_examples - labels.numel()]]) else: labels = torch.cat([labels, labels]) # Compute confusion matrices and save them to disk. confusions = {} for scheme in predictions: confusions[scheme] = confusion_matrix(labels, predictions[scheme]) to_write = ['train'] + params if train else ['test'] + test_params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save(confusions, os.path.join(confusion_path, f))
def main(seed=0, n_train=60000, n_test=10000, inhib=250, kernel_size=(16, ), stride=(2, ), time=100, n_filters=25, crop=0, lr=1e-2, lr_decay=0.99, dt=1, theta_plus=0.05, theta_decay=1e-7, intensity=5, norm=0.2, progress_interval=10, update_interval=250, train=True, plot=False, gpu=False): assert n_train % update_interval == 0 and n_test % update_interval == 0, \ 'No. examples must be divisible by update_interval' params = [ seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, inhib, time, dt, theta_plus, theta_decay, intensity, norm, progress_interval, update_interval ] model_name = '_'.join([str(x) for x in params]) if not train: test_params = [ seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, n_test, inhib, time, dt, theta_plus, theta_decay, intensity, norm, progress_interval, update_interval ] np.random.seed(seed) if gpu: torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) side_length = 28 - crop * 2 n_inpt = side_length**2 n_examples = n_train if train else n_test n_classes = 10 # Build network. if train: network = LocallyConnectedNetwork( n_inpt=n_inpt, input_shape=[side_length, side_length], kernel_size=kernel_size, stride=stride, n_filters=n_filters, inh=inhib, dt=dt, nu=[0, lr], theta_plus=theta_plus, theta_decay=theta_decay, wmin=0.0, wmax=1.0, norm=norm) else: network = load_network(os.path.join(params_path, model_name + '.pt')) network.connections['X', 'Y'].update_rule = NoOp( connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu) network.layers['Y'].theta_decay = 0 network.layers['Y'].theta_plus = 0 conv_size = network.connections['X', 'Y'].conv_size locations = network.connections['X', 'Y'].locations conv_prod = int(np.prod(conv_size)) n_neurons = n_filters * conv_prod # Voltage recording for excitatory and inhibitory layers. voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time) network.add_monitor(voltage_monitor, name='output_voltage') # Load MNIST data. dataset = MNIST(path=data_path, download=True) if train: images, labels = dataset.get_train() else: images, labels = dataset.get_test() images *= intensity images = images[:, crop:-crop, crop:-crop] # Record spikes during the simulation. spike_record = torch.zeros(update_interval, time, n_neurons) full_spike_record = torch.zeros(n_examples, n_neurons) # Neuron assignments and spike proportions. if train: logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs', max_iter=1000, multi_class='multinomial') logreg_model.coef_ = np.zeros([n_classes, n_neurons]) logreg_model.intercept_ = np.zeros(n_classes) logreg_model.classes_ = np.arange(n_classes) else: path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt') logreg_coef, logreg_intercept = torch.load(open(path, 'rb')) logreg_model = LogisticRegression(warm_start=True, n_jobs=-1, solver='lbfgs', max_iter=1000, multi_class='multinomial') logreg_model.coef_ = logreg_coef logreg_model.intercept_ = logreg_intercept logreg_model.classes_ = np.arange(n_classes) if train: best_accuracy = 0 # Sequence of accuracy estimates. curves = {'logreg': []} predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()} spikes = {} for layer in set(network.layers): spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time) network.add_monitor(spikes[layer], name=f'{layer}_spikes') # Train the network. if train: print('\nBegin training.\n') else: print('\nBegin test.\n') spike_ims = None spike_axes = None weights_im = None weights2_im = None start = t() for i in range(n_examples): if i % progress_interval == 0: print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)') start = t() if i % update_interval == 0 and i > 0: if i % len(labels) == 0: current_labels = labels[-update_interval:] current_record = full_spike_record[-update_interval:] else: current_labels = labels[i % len(labels) - update_interval:i % len(labels)] current_record = full_spike_record[i % len(labels) - update_interval:i % len(labels)] # Update and print accuracy evaluations. curves, preds = update_curves(curves, current_labels, n_classes, full_spike_record=current_record, logreg=logreg_model) print_results(curves) for scheme in preds: predictions[scheme] = torch.cat( [predictions[scheme], preds[scheme]], -1) # Save accuracy curves to disk. to_write = ['train'] + params if train else ['test'] + params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb')) if train: if any([x[-1] > best_accuracy for x in curves.values()]): print( 'New best accuracy! Saving network parameters to disk.' ) # Save network to disk. network.save(os.path.join(params_path, model_name + '.pt')) path = os.path.join( params_path, '_'.join(['auxiliary', model_name]) + '.pt') torch.save((logreg_model.coef_, logreg_model.intercept_), open(path, 'wb')) best_accuracy = max([x[-1] for x in curves.values()]) # Refit logistic regression model. logreg_model = logreg_fit(full_spike_record[:i], labels[:i], logreg_model) print() # Get next input sample. image = images[i % len(images)].contiguous().view(-1) sample = bernoulli(datum=image, time=time, dt=dt) inpts = {'X': sample} # Run the network on the input. network.run(inpts=inpts, time=time) retries = 0 while spikes['Y'].get('s').sum() < 5 and retries < 3: retries += 1 image *= 2 sample = bernoulli(datum=image, time=time, dt=dt) inpts = {'X': sample} network.run(inpts=inpts, time=time) # Add to spikes recording. spike_record[i % update_interval] = spikes['Y'].get('s').view(time, -1) full_spike_record[i] = spikes['Y'].get('s').view(time, -1).sum(0) if plot: # Optionally plot various simulation information. _spikes = { 'X': spikes['X'].get('s').view(side_length**2, time), 'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time) } spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes) weights_im = plot_locally_connected_weights( network.connections[('X', 'Y')].w, n_filters, kernel_size, conv_size, locations, side_length, im=weights_im) weights2_im = plot_weights(logreg_model.coef_, im=weights2_im) plt.pause(1e-8) network.reset_() # Reset state variables. print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)') i += 1 if i % len(labels) == 0: current_labels = labels[-update_interval:] current_record = full_spike_record[-update_interval:] else: current_labels = labels[i % len(labels) - update_interval:i % len(labels)] current_record = full_spike_record[i % len(labels) - update_interval:i % len(labels)] # Update and print accuracy evaluations. curves, preds = update_curves(curves, current_labels, n_classes, full_spike_record=current_record, logreg=logreg_model) print_results(curves) for scheme in preds: predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1) if train: if any([x[-1] > best_accuracy for x in curves.values()]): print('New best accuracy! Saving network parameters to disk.') # Save network to disk. network.save(os.path.join(params_path, model_name + '.pt')) path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt') torch.save((logreg_model.coef_, logreg_model.intercept_), open(path, 'wb')) if train: print('\nTraining complete.\n') else: print('\nTest complete.\n') print('Average accuracies:\n') for scheme in curves.keys(): print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme])))) # Save accuracy curves to disk. if train: to_write = ['train'] + params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb')) # Save results to disk. results = [np.mean(curves['logreg']), np.std(curves['logreg'])] to_write = params + results if train else test_params + results to_write = [str(x) for x in to_write] if train: name = 'train.csv' else: name = 'test.csv' if not os.path.isfile(os.path.join(results_path, name)): with open(os.path.join(results_path, name), 'w') as f: if train: f.write( 'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,inhib,time,timestep,theta_plus,' 'theta_decay,intensity,norm,progress_interval,update_interval,mean_logreg,std_logreg\n' ) else: f.write( 'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,inhib,time,timestep,' 'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,mean_logreg,std_logreg\n' ) with open(os.path.join(results_path, name), 'a') as f: f.write(','.join(to_write) + '\n') if labels.numel() > n_examples: labels = labels[:n_examples] else: while labels.numel() < n_examples: if 2 * labels.numel() > n_examples: labels = torch.cat( [labels, labels[:n_examples - labels.numel()]]) else: labels = torch.cat([labels, labels]) # Compute confusion matrices and save them to disk. confusions = {} for scheme in predictions: confusions[scheme] = confusion_matrix(labels, predictions[scheme]) to_write = ['train'] + params if train else ['test'] + test_params f = '_'.join([str(x) for x in to_write]) + '.pt' torch.save(confusions, os.path.join(confusion_path, f))