Пример #1
0
    def insert(self, key, data=None):
        """
        Insert or update data for given key.

        Returns True for insert (key is new) and
        False for update (key already present).
        """
        # TODO quick and dirty implementation
        if self.root is None:
            self.root = Node(key, data, tree=self)
            return True

        p = self.root
        parent = None
        isLeftChild = False

        while p is not None:
            if key == p.key:
                p.data = data
                return False
            elif key < p.key:
                parent = p
                p = p.left
                isLeftChild = True
            elif key > p.key:
                parent = p
                p = p.right
                isLeftChild = False

        p = Node(key, data, parent)
        if isLeftChild:
            parent.left = p
        else:
            parent.right = p
        return True
Пример #2
0
def main():
  tree = Node("a")
  tree.left = Node("b")
  tree.right = Node("c")
  assert is_symmetric(tree)
  tree.left.left = Node("x")
  assert not is_symmetric(tree)
Пример #3
0
def main():
  tree1 = c_balanced(4, "x")
  tree2 = Node("x")
  tree2.left = Node("x")
  tree2.right = Node("x")
  tree2.right.right = Node("x")

  assert tree1 == tree2
Пример #4
0
def c_balanced(c, value):
  if c == 0:
    return None
  root = Node(value)
  left_size = (c - 1) // 2
  right_size = (c - 1) - left_size
  root.left = c_balanced(left_size, value)
  root.right = c_balanced(right_size, value)

  return root
Пример #5
0
def solution():
    root = Node(30)
    root.left = Node(20)
    root.left.left = Node(10)
    assert is_balanced(root) == -1
    root.right = Node(40)
    root.left.right = Node(25)
    root.left.left.left = Node(0)
    assert is_balanced(root) == -1
    root.right.left = Node(35)
    root.right.right = Node(45)
    assert is_balanced(root) == 4
Пример #6
0
def solution2():
    root = Node(30)
    root.left = Node(20)
    root.left.left = Node(50)
    assert is_bst2(root, [-sys.maxint-1]) == False
    root.left.left = Node(10)
    assert is_bst2(root, [-sys.maxint-1]) == True
    root.right = Node(40)
    root.right.right = Node(0)
    root.left.right = Node(25)
    root.left.left.left = Node(0)
    assert is_bst2(root, [-sys.maxint-1]) == False
    root.right.right = Node(45)
    root.right.left = Node(35)
    assert is_bst2(root, [-sys.maxint-1]) == True
Пример #7
0
def main():
  tree1 = add_value(2)
  tree2 = Node(2)
  assert tree1 == tree2

  add_value(3, tree1)
  tree2.right = Node(3)
  assert tree1 == tree2

  add_value(0, tree1)
  tree2.left = Node(0)
  assert tree1 == tree2

  tree1 = from_list([3, 2, 5, 7, 1])
  tree2 = Node(3)
  tree2.left = Node(2)
  tree2.right = Node(5)
  tree2.right.right = Node(7)
  tree2.left.left = Node(1)
  assert tree1 == tree2

  assert is_symmetric(from_list([5, 3, 18, 1, 4, 12, 21]))
  assert not is_symmetric(from_list([3, 2, 5, 7, 4]))
Пример #8
0
class NaiveBST(BinaryTree):
    """
    An unbalanced Binary Search Tree Implementation.

    No augumented data.
    """
    def __init__(self):
        super().__init__()
        self.root = None

    def _search(self, key):
        p = self.root
        while p is not None:
            if p.key == key:
                return p.data
            elif p.key < key:
                p = p.right
            else:
                p = p.left
        raise KeyError("Key {} not found".format(key))
        return p

    def search(self, key):
        p = self._search(key)
        return p.data

    def search_functional(self, key):
        def accessAlgorithm(searchTarget):
            # the access algorithms choice for the next operation depends on
            # - the key to search (global information)
            # - the current key (local)
            # - augumenting attributes of the node
            # availible Operations
            # - move to parent/left/right
            # - rotate
            # and write augumenting information on entering (exiting?) node
            def moveLeft(p):
                return p.left

            def moveRight(p):
                return p.right

            def moveUp(p):
                return p.parent

            def rotate(p):
                p.rotate()
                return p

            def alg(p):
                # you can read p.* but not p.*.*
                # you can also write p.info etc. but p.key is fixed and
                # the pointers can only be modified with rotations
                # you must execute one of the above operations or return
                if p is None:
                    raise KeyError("Key {} not found".format(searchTarget))
                elif p.key == searchTarget:
                    return p
                elif p.key < searchTarget:
                    p = moveRight(p)
                    return alg(p)
                elif p.key > searchTarget:
                    p = moveLeft(p)
                    return alg(p)

            return alg

        alg = accessAlgorithm(key)
        p = self.root  # pointer is always initialized to root node
        p = alg(p)  # run algorithm

        return p.data

    def insert(self, key, data=None):
        """
        Insert or update data for given key.

        Returns True for insert (key is new) and
        False for update (key already present).
        """
        # TODO quick and dirty implementation
        if self.root is None:
            self.root = Node(key, data, tree=self)
            return True

        p = self.root
        parent = None
        isLeftChild = False

        while p is not None:
            if key == p.key:
                p.data = data
                return False
            elif key < p.key:
                parent = p
                p = p.left
                isLeftChild = True
            elif key > p.key:
                parent = p
                p = p.right
                isLeftChild = False

        p = Node(key, data, parent)
        if isLeftChild:
            parent.left = p
        else:
            parent.right = p
        return True

    def delete(self, key):
        pass

    def __repr__(self):
        return self.root.__repr__()

    def preorder(self):
        return self.root.preorder()
Пример #9
0
def run(h):

    # aaa
    bra = Operator("bra", "c b a k j i")
    ket = Operator("ket", "id jd kd ad bd cd")
    #bra = Operator("bra", "b a j i")
    #bra = Operator("bra", "j b i a")
    #bra = Operator("bra", "a3 a2 a1 i3 i2 i1")
    #ket = Operator("ket", "i1d i2d i6d a1d a5d a6d")
    #bra = Operator("bra", "a3 a2 a1 i3 i2 i1")
    #ket = Operator("ket", "i1d i2d i6d a1d a5d a6d")
    #ket = Operator("ket", "i1d i2d i3d a1d a2d a6d")

    # aab
    #bra = Operator("bra", "cb b a kb j i")
    #ket = Operator("ket", "id jd kbd ad bd cbd")

    # abb
    #bra = Operator("bra", "cb bb a kb jb i")
    #ket = Operator("ket", "id jbd kbd ad bbd cbd")

    # bbb
    #bra = Operator("bra", "cb bb ab kb jb ib")
    #ket = Operator("ket", "ibd jbd kbd abd bbd cbd")

    #bra = Operator("bra", "cb b a kb j i")
    #ket = Operator("ket", "id jd kbd ad bd cbd")

    for t in ts:

        fs = OperatorString(bra * h * t * ket)

        root_node = Node(fs)
        wicks(root_node)

        # Pretty Print
        #lines, _, _, _ = get_utf8_tree(root_node)
        #for line in lines:
        #    print(line)

        #print(root_node.right.right.right.right.left.data)

        #print(fs)
        #root_node.print()
        full = collect_fully_contracted(root_node)

        #print(full)
        #sys.exit()
        new_eqs = []
        new_weights = {}
        if len(full) == 0:
            continue

        for i, eq in enumerate(full):
            evs = [x.evaluate() for x in eq.deltas]

            if 0 in evs:
                continue

            mv = h.eval_deltas(eq.deltas)
            mt = t.eval_deltas(eq.deltas)
            #equiv = new_eqs_weights[key]
            #print(equiv)
            #print(eq.deltas)
            #print(eq.sign * eq.weight, mv)

            new_eqs.append((eq.sign * eq.weight, mv, mt))
            new_weights[(mv, mt)] = eq.sign * eq.weight

        terms = list(zip(*new_eqs))
        #print(terms)
        if len(terms) > 0:
            uniques = find_equiv(list(terms[1:]))
            print("==================================")
            print(h)
            print('----------------')
            for cnt, term in uniques:
                print(int(math.sqrt(cnt)) * new_weights[term], term)

            print("==================================\n")
Пример #10
0
def run(h, bra, ket, python_out):

    # aaa
    #bra = Operator("bra", "cb b a kb j i")
    #ket = Operator("ket", "id jd kbd ad bd cbd")

    # aab
    #bra = Operator("bra", "cb b a kb j i")
    #ket = Operator("ket", "id jd kbd ad bd cbd")

    # abb
    #bra = Operator("bra", "cb bb a kb jb i")
    #ket = Operator("ket", "id jbd kbd ad bbd cbd")

    # bbb
    #bra = Operator("bra", "cb bb ab kb jb ib")
    #ket = Operator("ket", "ibd jbd kbd abd bbd cbd")

    #bra = Operator("bra", "cb b a kb j i")
    #ket = Operator("ket", "id jd kbd ad bd cbd")

    fs = OperatorString(bra * h * ket)

    root_node = Node(fs)
    wicks(root_node)

    # Pretty Print
    #lines, _, _, _ = get_utf8_tree(root_node)
    #for line in lines:
    #    print(line)

    #print(root_node.right.right.right.right.left.data)

    full = collect_fully_contracted(root_node)

    #print(full)
    #sys.exit()
    new_eqs = []
    new_weights = {}
    if len(full) == 0:
        return
    for i, eq in enumerate(full):
        evs = [x.evaluate() for x in eq.deltas]

        if 0 in evs:
            continue

        mv = h.eval_deltas(eq.deltas)
        #equiv = new_eqs_weights[key]
        #print(equiv)
        #print(eq.deltas)
        #print(eq.sign * eq.weight, mv)

        new_eqs.append((eq.sign * eq.weight, mv))
        new_weights[mv] = eq.sign * eq.weight

    terms = list(zip(*new_eqs))
    if len(terms) > 0:
        uniques = find_equiv(list(terms[1]))
        print("==================================")
        print(h)
        print('----------------')
        for cnt, term in uniques:
            print(int(math.sqrt(cnt)) * new_weights[term], term)
            w = int(math.sqrt(cnt)) * new_weights[term]
            if w < 0:
                str_out = "-" + term.to_python()[1]
            else:
                str_out = term.to_python()[1]

            python_out.append(str_out)

        print("==================================\n")
"""
from collections import defaultdict, deque
from bintree import Node


def vertical_order(root):
    queue = deque()
    queue.appendleft((root, 0))
    distances = defaultdict(list)
    while queue:
        node, hd = queue.pop()
        distances[hd].append(node.key)
        if node.left:
            queue.appendleft((node.left, hd-1))
        if node.right:
            queue.appendleft((node.right, hd+1))
    for hd in sorted(distances):
        print ", ".join([str(k) for k in distances[hd]])


if __name__ == "__main__":
    root = Node(12)
    root.left = Node(10)
    root.right = Node(20)
    root.right.left = Node(25)
    root.right.right = Node(40)
    root.right.left.right = Node(3)

    print "Vertical ordering"
    vertical_order(root)
Пример #12
0
def solution2():
    root = Node(30)
    root.left = Node(20)
    root.left.left = Node(50)
    assert is_bst2(root, [-sys.maxint - 1]) == False
    root.left.left = Node(10)
    assert is_bst2(root, [-sys.maxint - 1]) == True
    root.right = Node(40)
    root.right.right = Node(0)
    root.left.right = Node(25)
    root.left.left.left = Node(0)
    assert is_bst2(root, [-sys.maxint - 1]) == False
    root.right.right = Node(45)
    root.right.left = Node(35)
    assert is_bst2(root, [-sys.maxint - 1]) == True
Пример #13
0
if __name__ == "__main__":

    ops = gen_fermi_onebody()
    #ops = gen_fermi_twobody()
    #ops = gen_fermi_threebody()

    bra = Operator("bra", "c b a k j i")
    ket = Operator("ket", "id jd kd ad bd dd")


    #sys.exit()

    for op in ops:
        print('--------', op, '-----------')
        fs = OperatorString(bra.string + op.string + ket.string)
        root_node = Node(fs)
        wicks(root_node)
        full = collect_fully_contracted(root_node)

        for eq in full:

            evs = [kd.evaluate() for kd in eq[1]]

            if 0 in evs:
                continue

            m = op.eval_deltas(eq[1])
            print(eq[0], m)

        print('--------------------------------')
def solution():
    root = Node(30)
    root.left = Node(20)
    root.left.left = Node(10)
    assert is_balanced(root) == -1
    root.right = Node(40)
    root.left.right = Node(25)
    root.left.left.left = Node(0)
    assert is_balanced(root) == -1
    root.right.left = Node(35)
    root.right.right = Node(45)
    assert is_balanced(root) == 4