Пример #1
0
def load_obj(obj):
    with open(obj, 'rb') as f:
        model = binvox.read_as_3d_array(f)      

    model = model.data#.astype(np.uint8)*255

    #print model[210:220,210:220,128]
    #print model.sum()

    #model2 = np.zeros((N,N,Nz))

    #model = cloadobj.resize(np.array(model).astype(np.float32),N,Nz)

    #print model[210:220,210:220,128]
    #print model.sum()

    #model2 = ndimage.filters.gaussian_filter(model2,sigma =0.05)

    #r = 20
    #r2 = 12
    #r3 = 8
    # c = scipy.ndimage.binary_closing(model2,structure=np.ones((r,r,r))).astype(np.uint8)
    #d = scipy.ndimage.binary_dilation(model2,structure=struct(r2)).astype(np.uint8)
    #e = scipy.ndimage.binary_erosion(d,structure=struct(r3)).astype(np.uint8)
    
    return model
Пример #2
0
    def __init__(self, filename):
        with open(filename, 'rb') as f:
            model = binvox.read_as_3d_array(f)
            self.data = model.data.astype(np.uint8)

        self.points = []
        self.dim = model.dims[0]
        self.indices = np.where(self.data == 1)
        total = self.data.sum()
        translate = (self.dim - 1) * 0.5

        for i in range(total):
            x = self.indices[0][i] - translate
            y = self.indices[1][i] - translate
            z = self.indices[2][i] - translate
            point = [x, y, z]
            self.points.append(point)
Пример #3
0
def read_binvox(fname):
    with open(fname, 'rb') as f:
        model = binvox.read_as_3d_array(f)
        data = vox2tanh(model.data.astype(np.float32))
        return data
Пример #4
0
def read_binvox(path):
    with open(path + ".binvox", 'rb') as f:
        m = binvox.read_as_3d_array(f).data
    return m
Пример #5
0
def read_binvox(filename):
    with open(filename, 'rb') as f:
        model = binvox.read_as_3d_array(f)
        data = model.data.astype(np.float32)
        return np.expand_dims(data, -1)
# -*- coding: utf-8 -*-
"""
Created on Wed May 22 14:45:36 2019

@author: Sooram Kang

"""
import os
import numpy as np
import binvox

X = []

examples_dir = 'C:\\Users\\CHANG\\PycharmProjects\\3dCNN\\DCGAN\\modelnet\\bed\\bed_binvox\\'
for example in os.listdir(examples_dir):
    if 'binvox' in example:
        with open(os.path.join(examples_dir, example), 'rb') as file:
            data = np.int32(binvox.read_as_3d_array(file).data)
            #            padded_data = np.pad(data, 3, 'constant')
            X.append(data)

np.savez_compressed('modelnet10_bed.npz', X_train=X)
Пример #7
0
def read_binvox(fname):
    with open(fname, 'rb') as f:
        model = binvox.read_as_3d_array(f)
        model = (model.data.astype(np.float32) - 0.5) / 0.5
        return model
Пример #8
0
def read_binvox(fn):
    with open(fn, 'rb') as f:
        model = binvox.read_as_3d_array(f)
        return model.data.astype(np.float32)