Пример #1
0
# CHOOSE CONVERTER
    tool_id = choose_converter(input_file_format,output_file_format)

# INITIALIZE GALAXY
    galaxy_instance = GalaxyInstance(url=base_url, key=apikey)
    history_client = HistoryClient(galaxy_instance)
    tool_client = ToolClient(galaxy_instance)
    dataset_client = DatasetClient(galaxy_instance)
    history = history_client.create_history('tmp')

# UPLOAD FILES
    input_file_1 = tool_client.upload_file(input_file_full, history['id'], type='txt')
    input_file_2 = tool_client.upload_file(input_file_full, history['id'], type='txt')
    params = {'input_numbers_001':{'src': 'hda', 'id': input_file_1['outputs'][0]['id']},'input_numbers_002':{'src': 'hda', 'id': input_file_2['outputs'][0]['id']}}
    wait_4_process(history['id'],"uploading files")

# RUN CONVERSION
    runtool_output = tool_client.run_tool(history_id=history['id'], tool_id=tool_id, tool_inputs=params)
    wait_4_process(history['id'],"running tool")

# DOWNLOAD CONVERTED FILE
    download_output = dataset_client.download_dataset(runtool_output['jobs'][0]['id'],output_file_full, use_default_filename=False)

    print download_output





class DataManagers:
    def __init__(self, galaxy_instance, configuration):
        """
        :param galaxy_instance: A GalaxyInstance object (import from bioblend.galaxy)
        :param configuration: A dictionary. Examples in the ephemeris documentation.
        """
        self.gi = galaxy_instance
        self.config = configuration
        self.tool_data_client = ToolDataClient(self.gi)
        self.tool_client = ToolClient(self.gi)
        self.possible_name_keys = ['name',
                                   'sequence_name']  # In order of importance!
        self.possible_value_keys = ['value', 'sequence_id',
                                    'dbkey']  # In order of importance!
        self.data_managers = self.config.get('data_managers')
        self.genomes = self.config.get('genomes', '')
        self.source_tables = DEFAULT_SOURCE_TABLES
        self.fetch_jobs = []
        self.skipped_fetch_jobs = []
        self.index_jobs = []
        self.skipped_index_jobs = []

    def initiate_job_lists(self):
        """
        Determines which data managers should be run to populate the data tables.
        Distinguishes between fetch jobs (download files) and index jobs.
        :return: populate self.fetch_jobs, self.skipped_fetch_jobs, self.index_jobs and self.skipped_index_jobs
        """
        self.fetch_jobs = []
        self.skipped_fetch_jobs = []
        self.index_jobs = []
        self.skipped_index_jobs = []
        for dm in self.data_managers:
            jobs, skipped_jobs = self.get_dm_jobs(dm)
            if self.dm_is_fetcher(dm):
                self.fetch_jobs.extend(jobs)
                self.skipped_fetch_jobs.extend(skipped_jobs)
            else:
                self.index_jobs.extend(jobs)
                self.skipped_index_jobs.extend(skipped_jobs)

    def get_dm_jobs(self, dm):
        """Gets the job entries for a single dm. Puts entries that already present in skipped_job_list.
        :returns job_list, skipped_job_list"""
        job_list = []
        skipped_job_list = []
        items = self.parse_items(dm.get('items', ['']))
        for item in items:
            dm_id = dm['id']
            params = dm['params']
            inputs = dict()
            # Iterate over all parameters, replace occurences of {{item}} with the current processing item
            # and create the tool_inputs dict for running the data manager job
            for param in params:
                key, value = list(param.items())[0]
                value_template = Template(value)
                value = value_template.render(item=item)
                inputs.update({key: value})

            job = dict(tool_id=dm_id, inputs=inputs)

            data_tables = dm.get('data_table_reload', [])
            if self.input_entries_exist_in_data_tables(data_tables, inputs):
                skipped_job_list.append(job)
            else:
                job_list.append(job)
        return job_list, skipped_job_list

    def dm_is_fetcher(self, dm):
        """Checks whether the data manager fetches a sequence instead of indexing.
        This is based on the source table.
        :returns True if dm is a fetcher. False if it is not."""
        data_tables = dm.get('data_table_reload', [])
        for data_table in data_tables:
            if data_table in self.source_tables:
                return True
        return False

    def data_table_entry_exists(self, data_table_name, entry, column='value'):
        """Checks whether an entry exists in the a specified column in the data_table."""
        try:
            data_table_content = self.tool_data_client.show_data_table(
                data_table_name)
        except Exception:
            raise Exception('Table "%s" does not exist' % data_table_name)

        try:
            column_index = data_table_content.get('columns').index(column)
        except IndexError:
            raise IndexError('Column "%s" does not exist in %s' %
                             (column, data_table_name))

        for field in data_table_content.get('fields'):
            if field[column_index] == entry:
                return True
        return False

    def input_entries_exist_in_data_tables(self, data_tables, input_dict):
        """Checks whether name and value entries from the input are already present in the data tables.
        If an entry is missing in of the tables, this function returns False"""
        value_entry = get_first_valid_entry(input_dict,
                                            self.possible_value_keys)
        name_entry = get_first_valid_entry(input_dict, self.possible_name_keys)

        # Return False if name and value entries are both None
        if not value_entry and not name_entry:
            return False

        # Check every data table for existence of name and value
        # Return False as soon as entry is not present
        for data_table in data_tables:
            if value_entry:
                if not self.data_table_entry_exists(
                        data_table, value_entry, column='value'):
                    return False
            if name_entry:
                if not self.data_table_entry_exists(
                        data_table, name_entry, column='name'):
                    return False
        # If all checks are passed the entries are present in the database tables.
        return True

    def parse_items(self, items):
        """
        Parses items with jinja2.
        :param items: the items to be parsed
        :return: the parsed items
        """
        if bool(self.genomes):
            items_template = Template(json.dumps(items))
            rendered_items = items_template.render(
                genomes=json.dumps(self.genomes))
            # Remove trailing " if present
            rendered_items = rendered_items.strip('"')
            items = json.loads(rendered_items)
        return items

    def run(self, log=None, ignore_errors=False, overwrite=False):
        """
        Runs the data managers.
        :param log: The log to be used.
        :param ignore_errors: Ignore erroring data_managers. Continue regardless.
        :param overwrite: Overwrite existing entries in data tables
        """
        self.initiate_job_lists()
        all_succesful_jobs = []
        all_failed_jobs = []
        all_skipped_jobs = []

        if not log:
            log = logging.getLogger()

        def run_jobs(jobs, skipped_jobs):
            job_list = []
            for skipped_job in skipped_jobs:
                if overwrite:
                    log.info(
                        '%s already run for %s. Entry will be overwritten.' %
                        (skipped_job["tool_id"], skipped_job["inputs"]))
                    jobs.append(skipped_job)
                else:
                    log.info('%s already run for %s. Skipping.' %
                             (skipped_job["tool_id"], skipped_job["inputs"]))
                    all_skipped_jobs.append(skipped_job)
            for job in jobs:
                started_job = self.tool_client.run_tool(
                    history_id=None,
                    tool_id=job["tool_id"],
                    tool_inputs=job["inputs"])
                log.info(
                    'Dispatched job %i. Running DM: "%s" with parameters: %s' %
                    (started_job['outputs'][0]['hid'], job["tool_id"],
                     job["inputs"]))
                job_list.append(started_job)

            successful_jobs, failed_jobs = wait(self.gi, job_list, log)
            if failed_jobs:
                if not ignore_errors:
                    log.error('Not all jobs successful! aborting...')
                    raise RuntimeError('Not all jobs successful! aborting...')
                else:
                    log.warning('Not all jobs successful! ignoring...')
            all_succesful_jobs.extend(successful_jobs)
            all_failed_jobs.extend(failed_jobs)

        log.info(
            "Running data managers that populate the following source data tables: %s"
            % self.source_tables)
        run_jobs(self.fetch_jobs, self.skipped_fetch_jobs)
        log.info("Running data managers that index sequences.")
        run_jobs(self.index_jobs, self.skipped_index_jobs)

        log.info('Finished running data managers. Results:')
        log.info('Successful jobs: %i ' % len(all_succesful_jobs))
        log.info('Skipped jobs: %i ' % len(all_skipped_jobs))
        log.info('Failed jobs: %i ' % len(all_failed_jobs))
        InstallResults = namedtuple(
            "InstallResults",
            ["successful_jobs", "failed_jobs", "skipped_jobs"])
        return InstallResults(successful_jobs=all_succesful_jobs,
                              failed_jobs=all_failed_jobs,
                              skipped_jobs=all_skipped_jobs)
Пример #3
0
def runWorkflow(argDictionary, comparisons):
    from bioblend.galaxy import GalaxyInstance
    from bioblend.galaxy.histories import HistoryClient
    from bioblend.galaxy.tools import ToolClient
    from bioblend.galaxy.workflows import WorkflowClient
    from bioblend.galaxy.libraries import LibraryClient
    import time
    
    api_key = ''
    galaxy_host = 'http://localhost:8080/'

    gi = GalaxyInstance(url=galaxy_host, key=api_key)

    history_client = HistoryClient(gi)
    tool_client = ToolClient(gi)
    workflow_client = WorkflowClient(gi)
    library_client = LibraryClient(gi)
    
    history = history_client.create_history(row['accessionNumber'])
    # Import the galaxy workflow
    workflow = workflow_client.show_workflow('a799d38679e985db')

    input_file = tool_client.upload_file(comparisons, history['id'], file_type='txt')

    # Run workflow on csv data to create a new history.
    params = dict()
    for key in workflow['steps'].keys():
        params[key] = argDictionary
    
    datamap = {'1' : {'id': input_file['outputs'][0]['id'], 'src': 'hda'}}

    workflow_client.invoke_workflow(workflow['id'], inputs = datamap, history_id = history['id'], params = params)
    
    # A diry hack, we want to wait until we have all datasets
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
        
    
    dataset_id = getFoldChangeData(history, history_client)['id']

    
    return_collection = [{'accessionNo':argDictionary['accessionNumber'], 'foldChange': getUrl(dataset_id),
    'PCA': getUrl(getMostRecentDatasetByName('PCAplot.png', history, history_client)['id']),'chrDirTable': getUrl(getMostRecentDatasetByName('chrDirTable.tabular', history, history_client)['id'])}]
    
    number_of_comparisons = -1
    for line in open(comparisons):
        if not line.isspace():
            number_of_comparisons += 1

    for comparison in range(0, int(number_of_comparisons)):
        tool_inputs = {
            'foldChangeTable' : {'id': dataset_id, 'src': 'hda'},
            'comparisonNumber' : comparison + 1
        }
        tool_client.run_tool(history['id'], 'cutFoldChangeTable', tool_inputs)
        
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
        
    if argDictionary['species'] in ["Rat","Cow","Horse","Pig","Zebrafish"]:
        pathwayAnalysisWorkflow = workflow_client.show_workflow('c9468fdb6dc5c5f1')
        
        params = dict()
        for key in pathwayAnalysisWorkflow['steps'].keys():
            params[key] = argDictionary
        
        if argDictionary['species'] == "Rat":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.rat.txt")
        if argDictionary['species'] == "Cow":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.cow.txt")
        if argDictionary['species'] == "Horse":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.horse.txt")
        if argDictionary['species'] == "Pig":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigStringNetwork.txt")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigGeneLengths.tabular")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.pig.txt")
        if argDictionary['species'] == "Zebrafish":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt")
        
                
        pathwayDatamap = {'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}}

        diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client)
        for index, diffExpData in enumerate(diffExpDataCollection):
            
            numCompleted = getNumberComplete(history['id'], history_client) + 10
            print(numCompleted)
            
            pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'}
            workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], 
                                            inputs = pathwayDatamap, 
                                            history_id = history['id'], 
                                            params = params)                  
            
            
            comparisonDict = getRowFromCsv(comparisons, index)
            
            if 'Factor1' in comparisonDict.keys():
                comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2']
                
            if 'Paired1' in comparisonDict.keys():
                comparisonDict['Factor'] = comparisonDict['Paired1']
                
            return_dict = {'accessionNo':argDictionary['accessionNumber'],
                           'factor':comparisonDict['Factor'],
                           'comparisonNum':comparisonDict['Numerator'],
                           'comparisonDenom':comparisonDict['Denominator'],
                           'foldChange': getUrl(diffExpData['id']),
                           'interactome': pathwayDatamap['0']['id'],
                           'exonLength': pathwayDatamap['2']['id']}
            
            while getNumberComplete(history['id'], history_client) < numCompleted:
                time.sleep(10)
    
            return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', 
                history, history_client)['id'])
            return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf',
            history, history_client)['id'])
            return_dict['slimEnrichmentPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular',
            history, history_client)['id'])
            return_dict['slimEnrichmentPlot'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPlot.png',
            history, history_client)['id'])
            return_collection.append(return_dict)     
       
        # Hard code keys to define the order
        keys = ['accessionNo','factor','comparisonNum','comparisonDenom','PCA','chrDirTable','foldChange',
        'interactome','exonLength','moduleNodes','modulePlots','enrichmentTable','slimEnrichmentPathways','slimEnrichmentPlot']
        with open('output/' +  argDictionary['accessionNumber'] + '-workflowOutput.csv', 'wb') as csvFile:
            # Get headers from last dictionary in collection as first doesn't contain all keys
            csvOutput = csv.DictWriter(csvFile, keys)
            csvOutput.writeheader()
            csvOutput.writerows(return_collection)
            
        return return_collection
    else: 
        pathwayAnalysisWorkflow = workflow_client.show_workflow('e85a3be143d5905b')
        
        params = dict()
        for key in pathwayAnalysisWorkflow['steps'].keys():
            params[key] = argDictionary
            
        # MouseGeneLengths.tab has id 457f69dd7016f307 - step 2 of workflow
        # Mouse interactome has id 073be90ac6c3bce5 - step 0 of workflow
        
        if argDictionary['species'] == "Mouse":  
    
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="mouseStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="MouseGeneLengths.tab")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt")
            secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-mouse.txt")
            
            pathwayDatamap = {'4' : {'id':  secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}}
        else:
        
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="humanStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="geneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt")
            secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-human.txt")
            pathwayDatamap = {'4' : {'id':  secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}}
    
        diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client)
        for index, diffExpData in enumerate(diffExpDataCollection):
            
            numCompleted = getNumberComplete(history['id'], history_client) + 14
            print(numCompleted)
            
            pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'}

            workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], 
                                            inputs = pathwayDatamap, 
                                            history_id = history['id'], 
                                            params = params)                  
            
            
            comparisonDict = getRowFromCsv(comparisons, index)
            
            if 'Factor1' in comparisonDict.keys():
                comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2']
                
            if 'Paired1' in comparisonDict.keys():
                comparisonDict['Factor'] = comparisonDict['Paired1']
                
            return_dict = {'accessionNo':argDictionary['accessionNumber'],
                           'factor':comparisonDict['Factor'],
                           'comparisonNum':comparisonDict['Numerator'],
                           'comparisonDenom':comparisonDict['Denominator'],
                           'foldChange': getUrl(diffExpData['id']),
                           'interactome': pathwayDatamap['0']['id'],
                           'exonLength': pathwayDatamap['2']['id']}
            
            while getNumberComplete(history['id'], history_client) < numCompleted:
                time.sleep(10)
    
            return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', 
                history, history_client)['id'])
            return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf',
            history, history_client)['id'])
            return_dict['pathways'] = getUrl(getMostRecentDatasetByName('pathways.tabular', 
                history, history_client)['id'])
            return_dict['enrichPlot'] = getUrl(getMostRecentDatasetByName('enrichmentPlot.png', 
                history, history_client)['id'])
            return_dict['enrichmentTable'] = getUrl(getMostRecentDatasetByName('TF_EnrichmentTable.tabular', 
                history, history_client)['id'])
            return_dict['slimEnrichmentPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular',
            history, history_client)['id'])
            return_dict['slimEnrichmentPlot'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPlot.png',
            history, history_client)['id'])
            return_collection.append(return_dict)     
       
        # Hard code keys to define the order
        keys = ['accessionNo','factor','comparisonNum','comparisonDenom','PCA','chrDirTable','foldChange',
        'interactome','exonLength','moduleNodes','modulePlots','pathways','enrichPlot','enrichmentTable','slimEnrichmentPathways','slimEnrichmentPlot']
        with open('output/' +  argDictionary['accessionNumber'] + '-workflowOutput.csv', 'wb') as csvFile:
            # Get headers from last dictionary in collection as first doesn't contain all keys
            csvOutput = csv.DictWriter(csvFile, keys)
            csvOutput.writeheader()
            csvOutput.writerows(return_collection)
            
        return return_collection
Пример #4
0
def runWorkflow(argDictionary, comparisons,samples):
    from bioblend.galaxy import GalaxyInstance
    from bioblend.galaxy.histories import HistoryClient
    from bioblend.galaxy.tools import ToolClient
    from bioblend.galaxy.workflows import WorkflowClient
    from bioblend.galaxy.libraries import LibraryClient
    import tempfile
    
    
    import time
    api_key = ''
    galaxy_host = ''

    gi = GalaxyInstance(url=galaxy_host, key=api_key)

    history_client = HistoryClient(gi)
    tool_client = ToolClient(gi)
    workflow_client = WorkflowClient(gi)
    library_client = LibraryClient(gi)
    
    history = history_client.create_history(argDictionary['accessionNumber'])
    
    comparisonsTable = tool_client.upload_file(comparisons, history['id'], file_type='txt')
    sampleTable = tool_client.upload_file(samples, history['id'], file_type='tabular')
    
    if argDictionary['site'] == "ENA":
        #fastqs available on ENA    
        tool_inputs = {
                "accessionNumber":argDictionary["ENA"],"sampleTable":{'id': sampleTable['outputs'][0]['id'], 'src': 'hda'}
                
            }
        
    
        #run the tool to get the data from ENA
        tool_client.run_tool(history['id'],'getRNASeqExpressionData', tool_inputs)
        
        #we want to wait until we have all datasets
        while getNumberNotComplete(history['id'], history_client) > 0:
            time.sleep(10)
            
        
        #sleep until all the fastq files are findable
        time.sleep(120)
        
        
        dirpath = tempfile.mkdtemp()
        fileList = getDatasetsByApproxName("files.tabular", history,history_client)[0]
        fileList = history_client.download_dataset(history["id"],fileList["id"],dirpath)
        num_lines = sum(1 for line in open(fileList)) -1
        
        datasets=list()
        while len(datasets)!=num_lines:
                    time.sleep(10)
                    datasets = getDatasetsByApproxName("fastq",history,history_client )                
    else: #for SRA       
    
        if argDictionary['single'] == "TRUE":
            with open(samples) as tsvfile:
                reader = csv.DictReader(tsvfile, delimiter='\t')
                for sample in reader:
                    print (sample)
                    fileNames=str.split(sample["File"],"|")
                    for fileName in fileNames:                    
                        tool_inputs = {
                                "input|input_select":"accession_number",
                                "outputformat":"fastqsanger.gz",
                                "input|accession":fileName   
                            }
                        #run the tool to get the single data from SRA
                        tool_client.run_tool(history['id'],'toolshed.g2.bx.psu.edu/repos/iuc/sra_tools/fastq_dump/2.8.1.3', tool_inputs)
               
        else:
             with open(samples) as tsvfile:
                reader = csv.DictReader(tsvfile, delimiter='\t')
           
                for sample in reader:            
                    tool_inputs = {
                            "accession_number":sample["File"]           
                        }
                    #run the tool to get the paired data from SRA
                    tool_client.run_tool(history['id'],'toolshed.g2.bx.psu.edu/repos/mandorodriguez/fastqdump_paired/fastq_dump_paired/1.1.4', tool_inputs)
                
        while getNumberNotComplete(history['id'], history_client) > 0:
            time.sleep(10)
     
    datasets = getDatasetsByApproxName("fastq",history,history_client )
    #get the fastQC tool
    for fastq in datasets:
        try:
            tool_inputs = {'input_file' : {'id': fastq['id'], 'src': 'hda'}}
            tool_client.run_tool(history['id'],'toolshed.g2.bx.psu.edu/repos/devteam/fastqc/fastqc/0.69', tool_inputs)
        except Exception:
            pass
        
    #wait till complete
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
    
    #make dataset collections for quantification using the fastq files
    collections=list()
    with open(samples) as tsvfile:
        reader = csv.DictReader(tsvfile, delimiter='\t')
        for row in reader:
            datasets=list()
            fileNames=str.split(row["File"],"|")
            
            for fileName in fileNames:
                datasets= datasets + getDatasetsByApproxName(fileName,history,history_client )
                    
            #make list of datasets
            collections.append(makeDataSetCollection(datasets,row["Sample"],history,history_client))
            
            
            
    #get the correct kallisto index
    species = argDictionary['species'].lower()
    index = getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name=species +"IndexFile")
    index = {'id': index, 'src': 'hda'}
    
    #run kallisto for every dataset collection
    for collection in collections:
        #set up the tool_inputs
        tool_inputs = {'index' : index,'inputs' : {'id': collection['id'], 'src': 'hdca'} ,"single":argDictionary["single"],"stranded":argDictionary["stranded"]}
        
        
        #often encounter connection broken error - possible problem with Certus server?
        #bypass by ignoring the exception
        tool_client.run_tool(history['id'],'kallistoQuant', tool_inputs)


    # we want to wait until we have all datasets
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
        
    # Run multiqc on kallisto logs and fastqc files
    datasets = getDatasetsByApproxName("RawData",history,history_client )
    kallistoLogs = getDatasetsByApproxName(".log", history, history_client)
    
    tool_inputs = {}
    for i, dataset in enumerate(datasets+kallistoLogs):
        if not dataset["deleted"]:
            if dataset in datasets:
                software = 'fastqc'
            else:
                software = 'kallisto'
            params = {'id' : dataset['id'], 'src': 'hda', 'name': dataset['name']}
            tool_inputs.update({'results_%s|software_cond|software' % i: software, 'results_%s|input_file' % i: params})

#    #summarise with the multiQC tool
    tool_client.run_tool(history['id'],'multiqc', tool_inputs)
    
    multiQc = getDatasetsByApproxName("multiqc",history,history_client)[0]
    
        
    #get all the abundance files to convert to gene level counts matrix
    datasets = getDatasetsByApproxName(".abundance",history,history_client )
    
    #make a dataset collection for to make a countsMatrix
    collection = makeDataSetCollection(datasets,"abundances",history,history_client)
    
    
    #set up the tool_inputs
    tool_inputs = {'inputs' : {'id': collection['id'], 'src': 'hdca'} ,"species":argDictionary['species']}
    
    #convert abundances to gene level counts matrix
    tool_client.run_tool(history['id'],'KallistoAbundancestoGeneCountMatrix', tool_inputs)
    
    # A diry hack, we want to wait until we have all datasets
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
    
    txi = getDatasetsByApproxName("txi",history,history_client)
    

    #set up the tool_inputs for PCA
    tool_inputs = {'txiData' : {'id': txi[0]['id'], 'src': 'hda'} ,'sampleTable' : {'id': sampleTable['outputs'][0]['id'], 'src': 'hda'} ,"species":argDictionary['species'],'technicalReplicates':argDictionary['technicalReplicates'],'batchCorrect':argDictionary['batchCorrect']}
    
    #run deseq2
    tool_client.run_tool(history['id'],'PCARNASeq', tool_inputs)
    
    pca = getDatasetsByApproxName("PCA",history,history_client)[0]
    
       
    #set up the tool_inputs for DESeq2
    tool_inputs = {'txiData' : {'id': txi[0]['id'], 'src': 'hda'} ,'sampleTable' : {'id': sampleTable['outputs'][0]['id'], 'src': 'hda'} ,
    'comparisonsTable' : {'id': comparisonsTable['outputs'][0]['id'], 'src': 'hda'} ,"foldChangeOnly":argDictionary['foldChangeOnly'],"species":argDictionary['species'],'technicalReplicates':argDictionary['technicalReplicates'],'batchCorrect':argDictionary['batchCorrect']}
    
    #run deseq2
    tool_client.run_tool(history['id'],'DESeq2FoldChange', tool_inputs)
         
    #run chrdir
    tool_client.run_tool(history['id'],'characteristicDirectionRNASeq', tool_inputs)
    
        #we want to wait until we have all datasets
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
        
        
    #get the foldchange data, cut and run pathway workflow    
    dataset_id = getFoldChangeData(history, history_client)['id']
    
    
    return_collection = [{'accessionNo':argDictionary['accessionNumber'], 'foldChange': getUrl(dataset_id), 'PCA': getUrl(pca["id"]),'chrDirTable': getUrl(getMostRecentDatasetByName('chrDirTable.tabular', history, history_client)['id'])}]
    
    
    number_of_comparisons = -1
    for line in open(comparisons):
        if not line.isspace():
            number_of_comparisons += 1

    for comparison in range(0, int(number_of_comparisons)):
        tool_inputs = {
            'foldChangeTable' : {'id': dataset_id, 'src': 'hda'},
            'comparisonNumber' : comparison + 1
        }
        tool_client.run_tool(history['id'], 'cutFoldChangeTable', tool_inputs)
        
    while getNumberNotComplete(history['id'], history_client) > 0:
        time.sleep(10)
        
        
    if argDictionary['species'] in ["Rat","Cow","Horse","Pig","Zebrafish"]:
        pathwayAnalysisWorkflow = workflow_client.show_workflow('c9468fdb6dc5c5f1')
        
        params = dict()
        for key in pathwayAnalysisWorkflow['steps'].keys():
            params[key] = argDictionary
        
        if argDictionary['species'] == "Rat":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt")
        if argDictionary['species'] == "Cow":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt")
        if argDictionary['species'] == "Horse":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.horse.txt")
        if argDictionary['species'] == "Pig":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigStringNetwork.txt")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigGeneLengths.tabular")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.pig.txt")
        if argDictionary['species'] == "Zebrafish":
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishGeneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt")
        
                
        pathwayDatamap = {'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}}

        diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client)
        for index, diffExpData in enumerate(diffExpDataCollection):
            
            numCompleted = getNumberComplete(history['id'], history_client) + 10
            print(numCompleted)
            
            pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'}
            workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], 
                                            inputs = pathwayDatamap, 
                                            history_id = history['id'], 
                                            params = params)                  
            
            
            comparisonDict = getRowFromCsv(comparisons, index)
            
            if 'Factor1' in comparisonDict.keys():
                comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2']
                
            return_dict = {'accessionNo':argDictionary['accessionNumber'],
                           'factor':comparisonDict['Factor'],
                           'comparisonNum':comparisonDict['Numerator'],
                           'comparisonDenom':comparisonDict['Denominator'],
                           'foldChange': getUrl(diffExpData['id']),
                           'interactome': pathwayDatamap['0']['id'],
                           'exonLength': pathwayDatamap['2']['id']}
            
            while getNumberComplete(history['id'], history_client) < numCompleted:
                time.sleep(10)
    
            return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', 
                history, history_client)['id'])
            return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf',
                history, history_client)['id'])
            return_dict['slimEnrichPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular',
                history, history_client)['id'])
            return_dict['enrichedDrugsReverse'] = getUrl(getMostRecentDatasetByName('enrichedDrugsReverse.tabular',
                history, history_client)['id'])
            return_dict['enrichedDrugsMimic'] = getUrl(getMostRecentDatasetByName('enrichedDrugsMimic.tabular',
                history, history_client)['id'])
            return_dict['enrichedTerms'] = getUrl(getMostRecentDatasetByName('enrichedTerms.tabular',
                history, history_client)['id'])
            return_dict['enrichedTerms.reduced'] = getUrl(getMostRecentDatasetByName('enrichedTerms.reduced.tabular',
                history, history_client)['id'])
            return_dict['GO.MDS'] = getUrl(getMostRecentDatasetByName('GO.MDS.html',
                history, history_client)['id'])
            return_collection.append(return_dict)
       
        # Hard code keys to define the order
        keys = ['accessionNo','multiQC','factor','PCA','chrDirTable','comparisonNum','comparisonDenom','foldChange',
        'interactome','exonLength','moduleNodes','modulePlots',
        'slimEnrichPathways','secretedProteins','enrichedDrugsReverse','enrichedDrugsMimic','enrichedTerms','enrichedTerms.reduced','GO.MDS']
        
        outFileName = 'output/' +  argDictionary['accessionNumber'] + '-workflowOutput.tsv'
        
        with open(outFileName, 'wb') as csvFile:
            # Get headers from last dictionary in collection as first doesn't contain all keys
            csvOutput = csv.DictWriter(csvFile, keys, delimiter = "\t")
            csvOutput.writeheader()
            csvOutput.writerows(return_collection)
            
        #tool_client.upload_file(outFileName, history['id'], file_type='tsv')
        
        return return_collection
    else:  
        pathwayAnalysisWorkflow = workflow_client.show_workflow('e85a3be143d5905b')
        
        params = dict()
        for key in pathwayAnalysisWorkflow['steps'].keys():
            params[key] = argDictionary
            
       
        if argDictionary['species'] == "Mouse":  
        
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="mouseStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="MouseGeneLengths.tab")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt")
            secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-mouse.txt")
            
            pathwayDatamap = {'4' : {'id':  secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}}
        else:
        
            network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="humanStringNetwork")
            geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="geneLengths")
            homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt")
            secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-human.txt")
            pathwayDatamap = {'4' : {'id':  secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}}
    
        diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client)
        for index, diffExpData in enumerate(diffExpDataCollection):
            
            numCompleted = getNumberComplete(history['id'], history_client) + 14
            print(numCompleted)
            
            pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'}

    
        
            #pathwayDatamap['1'] = {'id': diffExpData['id'], 'src': 'hda'}
            workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], 
                                            inputs = pathwayDatamap, 
                                            history_id = history['id'], 
                                            params = params)
            comparisonDict = getRowFromCsv(comparisons, index)
            
            if 'Factor1' in comparisonDict.keys():
                comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2']
                
            return_dict = {'accessionNo':argDictionary['accessionNumber'],
                           'factor':comparisonDict['Factor'],
                           'comparisonNum':comparisonDict['Numerator'],
                           'comparisonDenom':comparisonDict['Denominator'],
                           'foldChange': getUrl(diffExpData['id']),
                           'interactome': pathwayDatamap['0']['id'],
                           'exonLength': pathwayDatamap['2']['id']}
            
            while getNumberComplete(history['id'], history_client) < numCompleted:
                time.sleep(10)
    
            return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', 
                history, history_client)['id'])
            return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf',
                history, history_client)['id'])
            return_dict['pathways'] = getUrl(getMostRecentDatasetByName('pathways.tabular', 
                history, history_client)['id'])
            return_dict['enrichPlot'] = getUrl(getMostRecentDatasetByName('enrichmentPlot.png', 
                history, history_client)['id'])
            return_dict['enrichmentTable'] = getUrl(getMostRecentDatasetByName('TF_EnrichmentTable.tabular', 
                history, history_client)['id'])
            return_dict['slimEnrichPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular',
                history, history_client)['id'])
            return_dict['secretedProteins'] = getUrl(getMostRecentDatasetByName('secretedProteins.tabular',
                history, history_client)['id'])
            return_dict['enrichedDrugsReverse'] = getUrl(getMostRecentDatasetByName('enrichedDrugsReverse.tabular',
                history, history_client)['id'])
            return_dict['enrichedDrugsMimic'] = getUrl(getMostRecentDatasetByName('enrichedDrugsMimic.tabular',
                history, history_client)['id'])
            return_dict['enrichedTerms'] = getUrl(getMostRecentDatasetByName('enrichedTerms.tabular',
                history, history_client)['id'])
            return_dict['enrichedTerms.reduced'] = getUrl(getMostRecentDatasetByName('enrichedTerms.reduced.tabular',
                history, history_client)['id'])
            return_dict['GO.MDS'] = getUrl(getMostRecentDatasetByName('GO.MDS.html',
                history, history_client)['id'])
            return_collection.append(return_dict)
       
        # Hard code keys to define the order
        keys = ['accessionNo','multiQC','factor','PCA','chrDirTable','comparisonNum','comparisonDenom','foldChange',
        'interactome','exonLength','moduleNodes','modulePlots','pathways','enrichPlot', 'enrichmentTable',
        'slimEnrichPathways','secretedProteins','enrichedDrugsReverse','enrichedDrugsMimic','enrichedTerms','enrichedTerms.reduced','GO.MDS']
        
        outFileName = 'output/' +  argDictionary['accessionNumber'] + '-workflowOutput.tsv'
        
        with open(outFileName, 'wb') as csvFile:
            # Get headers from last dictionary in collection as first doesn't contain all keys
            csvOutput = csv.DictWriter(csvFile, keys, delimiter = "\t")
            csvOutput.writeheader()
            csvOutput.writerows(return_collection)
            
        
        return return_collection