# CHOOSE CONVERTER tool_id = choose_converter(input_file_format,output_file_format) # INITIALIZE GALAXY galaxy_instance = GalaxyInstance(url=base_url, key=apikey) history_client = HistoryClient(galaxy_instance) tool_client = ToolClient(galaxy_instance) dataset_client = DatasetClient(galaxy_instance) history = history_client.create_history('tmp') # UPLOAD FILES input_file_1 = tool_client.upload_file(input_file_full, history['id'], type='txt') input_file_2 = tool_client.upload_file(input_file_full, history['id'], type='txt') params = {'input_numbers_001':{'src': 'hda', 'id': input_file_1['outputs'][0]['id']},'input_numbers_002':{'src': 'hda', 'id': input_file_2['outputs'][0]['id']}} wait_4_process(history['id'],"uploading files") # RUN CONVERSION runtool_output = tool_client.run_tool(history_id=history['id'], tool_id=tool_id, tool_inputs=params) wait_4_process(history['id'],"running tool") # DOWNLOAD CONVERTED FILE download_output = dataset_client.download_dataset(runtool_output['jobs'][0]['id'],output_file_full, use_default_filename=False) print download_output
class DataManagers: def __init__(self, galaxy_instance, configuration): """ :param galaxy_instance: A GalaxyInstance object (import from bioblend.galaxy) :param configuration: A dictionary. Examples in the ephemeris documentation. """ self.gi = galaxy_instance self.config = configuration self.tool_data_client = ToolDataClient(self.gi) self.tool_client = ToolClient(self.gi) self.possible_name_keys = ['name', 'sequence_name'] # In order of importance! self.possible_value_keys = ['value', 'sequence_id', 'dbkey'] # In order of importance! self.data_managers = self.config.get('data_managers') self.genomes = self.config.get('genomes', '') self.source_tables = DEFAULT_SOURCE_TABLES self.fetch_jobs = [] self.skipped_fetch_jobs = [] self.index_jobs = [] self.skipped_index_jobs = [] def initiate_job_lists(self): """ Determines which data managers should be run to populate the data tables. Distinguishes between fetch jobs (download files) and index jobs. :return: populate self.fetch_jobs, self.skipped_fetch_jobs, self.index_jobs and self.skipped_index_jobs """ self.fetch_jobs = [] self.skipped_fetch_jobs = [] self.index_jobs = [] self.skipped_index_jobs = [] for dm in self.data_managers: jobs, skipped_jobs = self.get_dm_jobs(dm) if self.dm_is_fetcher(dm): self.fetch_jobs.extend(jobs) self.skipped_fetch_jobs.extend(skipped_jobs) else: self.index_jobs.extend(jobs) self.skipped_index_jobs.extend(skipped_jobs) def get_dm_jobs(self, dm): """Gets the job entries for a single dm. Puts entries that already present in skipped_job_list. :returns job_list, skipped_job_list""" job_list = [] skipped_job_list = [] items = self.parse_items(dm.get('items', [''])) for item in items: dm_id = dm['id'] params = dm['params'] inputs = dict() # Iterate over all parameters, replace occurences of {{item}} with the current processing item # and create the tool_inputs dict for running the data manager job for param in params: key, value = list(param.items())[0] value_template = Template(value) value = value_template.render(item=item) inputs.update({key: value}) job = dict(tool_id=dm_id, inputs=inputs) data_tables = dm.get('data_table_reload', []) if self.input_entries_exist_in_data_tables(data_tables, inputs): skipped_job_list.append(job) else: job_list.append(job) return job_list, skipped_job_list def dm_is_fetcher(self, dm): """Checks whether the data manager fetches a sequence instead of indexing. This is based on the source table. :returns True if dm is a fetcher. False if it is not.""" data_tables = dm.get('data_table_reload', []) for data_table in data_tables: if data_table in self.source_tables: return True return False def data_table_entry_exists(self, data_table_name, entry, column='value'): """Checks whether an entry exists in the a specified column in the data_table.""" try: data_table_content = self.tool_data_client.show_data_table( data_table_name) except Exception: raise Exception('Table "%s" does not exist' % data_table_name) try: column_index = data_table_content.get('columns').index(column) except IndexError: raise IndexError('Column "%s" does not exist in %s' % (column, data_table_name)) for field in data_table_content.get('fields'): if field[column_index] == entry: return True return False def input_entries_exist_in_data_tables(self, data_tables, input_dict): """Checks whether name and value entries from the input are already present in the data tables. If an entry is missing in of the tables, this function returns False""" value_entry = get_first_valid_entry(input_dict, self.possible_value_keys) name_entry = get_first_valid_entry(input_dict, self.possible_name_keys) # Return False if name and value entries are both None if not value_entry and not name_entry: return False # Check every data table for existence of name and value # Return False as soon as entry is not present for data_table in data_tables: if value_entry: if not self.data_table_entry_exists( data_table, value_entry, column='value'): return False if name_entry: if not self.data_table_entry_exists( data_table, name_entry, column='name'): return False # If all checks are passed the entries are present in the database tables. return True def parse_items(self, items): """ Parses items with jinja2. :param items: the items to be parsed :return: the parsed items """ if bool(self.genomes): items_template = Template(json.dumps(items)) rendered_items = items_template.render( genomes=json.dumps(self.genomes)) # Remove trailing " if present rendered_items = rendered_items.strip('"') items = json.loads(rendered_items) return items def run(self, log=None, ignore_errors=False, overwrite=False): """ Runs the data managers. :param log: The log to be used. :param ignore_errors: Ignore erroring data_managers. Continue regardless. :param overwrite: Overwrite existing entries in data tables """ self.initiate_job_lists() all_succesful_jobs = [] all_failed_jobs = [] all_skipped_jobs = [] if not log: log = logging.getLogger() def run_jobs(jobs, skipped_jobs): job_list = [] for skipped_job in skipped_jobs: if overwrite: log.info( '%s already run for %s. Entry will be overwritten.' % (skipped_job["tool_id"], skipped_job["inputs"])) jobs.append(skipped_job) else: log.info('%s already run for %s. Skipping.' % (skipped_job["tool_id"], skipped_job["inputs"])) all_skipped_jobs.append(skipped_job) for job in jobs: started_job = self.tool_client.run_tool( history_id=None, tool_id=job["tool_id"], tool_inputs=job["inputs"]) log.info( 'Dispatched job %i. Running DM: "%s" with parameters: %s' % (started_job['outputs'][0]['hid'], job["tool_id"], job["inputs"])) job_list.append(started_job) successful_jobs, failed_jobs = wait(self.gi, job_list, log) if failed_jobs: if not ignore_errors: log.error('Not all jobs successful! aborting...') raise RuntimeError('Not all jobs successful! aborting...') else: log.warning('Not all jobs successful! ignoring...') all_succesful_jobs.extend(successful_jobs) all_failed_jobs.extend(failed_jobs) log.info( "Running data managers that populate the following source data tables: %s" % self.source_tables) run_jobs(self.fetch_jobs, self.skipped_fetch_jobs) log.info("Running data managers that index sequences.") run_jobs(self.index_jobs, self.skipped_index_jobs) log.info('Finished running data managers. Results:') log.info('Successful jobs: %i ' % len(all_succesful_jobs)) log.info('Skipped jobs: %i ' % len(all_skipped_jobs)) log.info('Failed jobs: %i ' % len(all_failed_jobs)) InstallResults = namedtuple( "InstallResults", ["successful_jobs", "failed_jobs", "skipped_jobs"]) return InstallResults(successful_jobs=all_succesful_jobs, failed_jobs=all_failed_jobs, skipped_jobs=all_skipped_jobs)
def runWorkflow(argDictionary, comparisons): from bioblend.galaxy import GalaxyInstance from bioblend.galaxy.histories import HistoryClient from bioblend.galaxy.tools import ToolClient from bioblend.galaxy.workflows import WorkflowClient from bioblend.galaxy.libraries import LibraryClient import time api_key = '' galaxy_host = 'http://localhost:8080/' gi = GalaxyInstance(url=galaxy_host, key=api_key) history_client = HistoryClient(gi) tool_client = ToolClient(gi) workflow_client = WorkflowClient(gi) library_client = LibraryClient(gi) history = history_client.create_history(row['accessionNumber']) # Import the galaxy workflow workflow = workflow_client.show_workflow('a799d38679e985db') input_file = tool_client.upload_file(comparisons, history['id'], file_type='txt') # Run workflow on csv data to create a new history. params = dict() for key in workflow['steps'].keys(): params[key] = argDictionary datamap = {'1' : {'id': input_file['outputs'][0]['id'], 'src': 'hda'}} workflow_client.invoke_workflow(workflow['id'], inputs = datamap, history_id = history['id'], params = params) # A diry hack, we want to wait until we have all datasets while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) dataset_id = getFoldChangeData(history, history_client)['id'] return_collection = [{'accessionNo':argDictionary['accessionNumber'], 'foldChange': getUrl(dataset_id), 'PCA': getUrl(getMostRecentDatasetByName('PCAplot.png', history, history_client)['id']),'chrDirTable': getUrl(getMostRecentDatasetByName('chrDirTable.tabular', history, history_client)['id'])}] number_of_comparisons = -1 for line in open(comparisons): if not line.isspace(): number_of_comparisons += 1 for comparison in range(0, int(number_of_comparisons)): tool_inputs = { 'foldChangeTable' : {'id': dataset_id, 'src': 'hda'}, 'comparisonNumber' : comparison + 1 } tool_client.run_tool(history['id'], 'cutFoldChangeTable', tool_inputs) while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) if argDictionary['species'] in ["Rat","Cow","Horse","Pig","Zebrafish"]: pathwayAnalysisWorkflow = workflow_client.show_workflow('c9468fdb6dc5c5f1') params = dict() for key in pathwayAnalysisWorkflow['steps'].keys(): params[key] = argDictionary if argDictionary['species'] == "Rat": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.rat.txt") if argDictionary['species'] == "Cow": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.cow.txt") if argDictionary['species'] == "Horse": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.horse.txt") if argDictionary['species'] == "Pig": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigStringNetwork.txt") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigGeneLengths.tabular") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.pig.txt") if argDictionary['species'] == "Zebrafish": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt") pathwayDatamap = {'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}} diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client) for index, diffExpData in enumerate(diffExpDataCollection): numCompleted = getNumberComplete(history['id'], history_client) + 10 print(numCompleted) pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'} workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], inputs = pathwayDatamap, history_id = history['id'], params = params) comparisonDict = getRowFromCsv(comparisons, index) if 'Factor1' in comparisonDict.keys(): comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2'] if 'Paired1' in comparisonDict.keys(): comparisonDict['Factor'] = comparisonDict['Paired1'] return_dict = {'accessionNo':argDictionary['accessionNumber'], 'factor':comparisonDict['Factor'], 'comparisonNum':comparisonDict['Numerator'], 'comparisonDenom':comparisonDict['Denominator'], 'foldChange': getUrl(diffExpData['id']), 'interactome': pathwayDatamap['0']['id'], 'exonLength': pathwayDatamap['2']['id']} while getNumberComplete(history['id'], history_client) < numCompleted: time.sleep(10) return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', history, history_client)['id']) return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf', history, history_client)['id']) return_dict['slimEnrichmentPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular', history, history_client)['id']) return_dict['slimEnrichmentPlot'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPlot.png', history, history_client)['id']) return_collection.append(return_dict) # Hard code keys to define the order keys = ['accessionNo','factor','comparisonNum','comparisonDenom','PCA','chrDirTable','foldChange', 'interactome','exonLength','moduleNodes','modulePlots','enrichmentTable','slimEnrichmentPathways','slimEnrichmentPlot'] with open('output/' + argDictionary['accessionNumber'] + '-workflowOutput.csv', 'wb') as csvFile: # Get headers from last dictionary in collection as first doesn't contain all keys csvOutput = csv.DictWriter(csvFile, keys) csvOutput.writeheader() csvOutput.writerows(return_collection) return return_collection else: pathwayAnalysisWorkflow = workflow_client.show_workflow('e85a3be143d5905b') params = dict() for key in pathwayAnalysisWorkflow['steps'].keys(): params[key] = argDictionary # MouseGeneLengths.tab has id 457f69dd7016f307 - step 2 of workflow # Mouse interactome has id 073be90ac6c3bce5 - step 0 of workflow if argDictionary['species'] == "Mouse": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="mouseStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="MouseGeneLengths.tab") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt") secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-mouse.txt") pathwayDatamap = {'4' : {'id': secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}} else: network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="humanStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="geneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt") secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-human.txt") pathwayDatamap = {'4' : {'id': secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}} diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client) for index, diffExpData in enumerate(diffExpDataCollection): numCompleted = getNumberComplete(history['id'], history_client) + 14 print(numCompleted) pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'} workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], inputs = pathwayDatamap, history_id = history['id'], params = params) comparisonDict = getRowFromCsv(comparisons, index) if 'Factor1' in comparisonDict.keys(): comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2'] if 'Paired1' in comparisonDict.keys(): comparisonDict['Factor'] = comparisonDict['Paired1'] return_dict = {'accessionNo':argDictionary['accessionNumber'], 'factor':comparisonDict['Factor'], 'comparisonNum':comparisonDict['Numerator'], 'comparisonDenom':comparisonDict['Denominator'], 'foldChange': getUrl(diffExpData['id']), 'interactome': pathwayDatamap['0']['id'], 'exonLength': pathwayDatamap['2']['id']} while getNumberComplete(history['id'], history_client) < numCompleted: time.sleep(10) return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', history, history_client)['id']) return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf', history, history_client)['id']) return_dict['pathways'] = getUrl(getMostRecentDatasetByName('pathways.tabular', history, history_client)['id']) return_dict['enrichPlot'] = getUrl(getMostRecentDatasetByName('enrichmentPlot.png', history, history_client)['id']) return_dict['enrichmentTable'] = getUrl(getMostRecentDatasetByName('TF_EnrichmentTable.tabular', history, history_client)['id']) return_dict['slimEnrichmentPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular', history, history_client)['id']) return_dict['slimEnrichmentPlot'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPlot.png', history, history_client)['id']) return_collection.append(return_dict) # Hard code keys to define the order keys = ['accessionNo','factor','comparisonNum','comparisonDenom','PCA','chrDirTable','foldChange', 'interactome','exonLength','moduleNodes','modulePlots','pathways','enrichPlot','enrichmentTable','slimEnrichmentPathways','slimEnrichmentPlot'] with open('output/' + argDictionary['accessionNumber'] + '-workflowOutput.csv', 'wb') as csvFile: # Get headers from last dictionary in collection as first doesn't contain all keys csvOutput = csv.DictWriter(csvFile, keys) csvOutput.writeheader() csvOutput.writerows(return_collection) return return_collection
def runWorkflow(argDictionary, comparisons,samples): from bioblend.galaxy import GalaxyInstance from bioblend.galaxy.histories import HistoryClient from bioblend.galaxy.tools import ToolClient from bioblend.galaxy.workflows import WorkflowClient from bioblend.galaxy.libraries import LibraryClient import tempfile import time api_key = '' galaxy_host = '' gi = GalaxyInstance(url=galaxy_host, key=api_key) history_client = HistoryClient(gi) tool_client = ToolClient(gi) workflow_client = WorkflowClient(gi) library_client = LibraryClient(gi) history = history_client.create_history(argDictionary['accessionNumber']) comparisonsTable = tool_client.upload_file(comparisons, history['id'], file_type='txt') sampleTable = tool_client.upload_file(samples, history['id'], file_type='tabular') if argDictionary['site'] == "ENA": #fastqs available on ENA tool_inputs = { "accessionNumber":argDictionary["ENA"],"sampleTable":{'id': sampleTable['outputs'][0]['id'], 'src': 'hda'} } #run the tool to get the data from ENA tool_client.run_tool(history['id'],'getRNASeqExpressionData', tool_inputs) #we want to wait until we have all datasets while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) #sleep until all the fastq files are findable time.sleep(120) dirpath = tempfile.mkdtemp() fileList = getDatasetsByApproxName("files.tabular", history,history_client)[0] fileList = history_client.download_dataset(history["id"],fileList["id"],dirpath) num_lines = sum(1 for line in open(fileList)) -1 datasets=list() while len(datasets)!=num_lines: time.sleep(10) datasets = getDatasetsByApproxName("fastq",history,history_client ) else: #for SRA if argDictionary['single'] == "TRUE": with open(samples) as tsvfile: reader = csv.DictReader(tsvfile, delimiter='\t') for sample in reader: print (sample) fileNames=str.split(sample["File"],"|") for fileName in fileNames: tool_inputs = { "input|input_select":"accession_number", "outputformat":"fastqsanger.gz", "input|accession":fileName } #run the tool to get the single data from SRA tool_client.run_tool(history['id'],'toolshed.g2.bx.psu.edu/repos/iuc/sra_tools/fastq_dump/2.8.1.3', tool_inputs) else: with open(samples) as tsvfile: reader = csv.DictReader(tsvfile, delimiter='\t') for sample in reader: tool_inputs = { "accession_number":sample["File"] } #run the tool to get the paired data from SRA tool_client.run_tool(history['id'],'toolshed.g2.bx.psu.edu/repos/mandorodriguez/fastqdump_paired/fastq_dump_paired/1.1.4', tool_inputs) while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) datasets = getDatasetsByApproxName("fastq",history,history_client ) #get the fastQC tool for fastq in datasets: try: tool_inputs = {'input_file' : {'id': fastq['id'], 'src': 'hda'}} tool_client.run_tool(history['id'],'toolshed.g2.bx.psu.edu/repos/devteam/fastqc/fastqc/0.69', tool_inputs) except Exception: pass #wait till complete while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) #make dataset collections for quantification using the fastq files collections=list() with open(samples) as tsvfile: reader = csv.DictReader(tsvfile, delimiter='\t') for row in reader: datasets=list() fileNames=str.split(row["File"],"|") for fileName in fileNames: datasets= datasets + getDatasetsByApproxName(fileName,history,history_client ) #make list of datasets collections.append(makeDataSetCollection(datasets,row["Sample"],history,history_client)) #get the correct kallisto index species = argDictionary['species'].lower() index = getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name=species +"IndexFile") index = {'id': index, 'src': 'hda'} #run kallisto for every dataset collection for collection in collections: #set up the tool_inputs tool_inputs = {'index' : index,'inputs' : {'id': collection['id'], 'src': 'hdca'} ,"single":argDictionary["single"],"stranded":argDictionary["stranded"]} #often encounter connection broken error - possible problem with Certus server? #bypass by ignoring the exception tool_client.run_tool(history['id'],'kallistoQuant', tool_inputs) # we want to wait until we have all datasets while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) # Run multiqc on kallisto logs and fastqc files datasets = getDatasetsByApproxName("RawData",history,history_client ) kallistoLogs = getDatasetsByApproxName(".log", history, history_client) tool_inputs = {} for i, dataset in enumerate(datasets+kallistoLogs): if not dataset["deleted"]: if dataset in datasets: software = 'fastqc' else: software = 'kallisto' params = {'id' : dataset['id'], 'src': 'hda', 'name': dataset['name']} tool_inputs.update({'results_%s|software_cond|software' % i: software, 'results_%s|input_file' % i: params}) # #summarise with the multiQC tool tool_client.run_tool(history['id'],'multiqc', tool_inputs) multiQc = getDatasetsByApproxName("multiqc",history,history_client)[0] #get all the abundance files to convert to gene level counts matrix datasets = getDatasetsByApproxName(".abundance",history,history_client ) #make a dataset collection for to make a countsMatrix collection = makeDataSetCollection(datasets,"abundances",history,history_client) #set up the tool_inputs tool_inputs = {'inputs' : {'id': collection['id'], 'src': 'hdca'} ,"species":argDictionary['species']} #convert abundances to gene level counts matrix tool_client.run_tool(history['id'],'KallistoAbundancestoGeneCountMatrix', tool_inputs) # A diry hack, we want to wait until we have all datasets while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) txi = getDatasetsByApproxName("txi",history,history_client) #set up the tool_inputs for PCA tool_inputs = {'txiData' : {'id': txi[0]['id'], 'src': 'hda'} ,'sampleTable' : {'id': sampleTable['outputs'][0]['id'], 'src': 'hda'} ,"species":argDictionary['species'],'technicalReplicates':argDictionary['technicalReplicates'],'batchCorrect':argDictionary['batchCorrect']} #run deseq2 tool_client.run_tool(history['id'],'PCARNASeq', tool_inputs) pca = getDatasetsByApproxName("PCA",history,history_client)[0] #set up the tool_inputs for DESeq2 tool_inputs = {'txiData' : {'id': txi[0]['id'], 'src': 'hda'} ,'sampleTable' : {'id': sampleTable['outputs'][0]['id'], 'src': 'hda'} , 'comparisonsTable' : {'id': comparisonsTable['outputs'][0]['id'], 'src': 'hda'} ,"foldChangeOnly":argDictionary['foldChangeOnly'],"species":argDictionary['species'],'technicalReplicates':argDictionary['technicalReplicates'],'batchCorrect':argDictionary['batchCorrect']} #run deseq2 tool_client.run_tool(history['id'],'DESeq2FoldChange', tool_inputs) #run chrdir tool_client.run_tool(history['id'],'characteristicDirectionRNASeq', tool_inputs) #we want to wait until we have all datasets while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) #get the foldchange data, cut and run pathway workflow dataset_id = getFoldChangeData(history, history_client)['id'] return_collection = [{'accessionNo':argDictionary['accessionNumber'], 'foldChange': getUrl(dataset_id), 'PCA': getUrl(pca["id"]),'chrDirTable': getUrl(getMostRecentDatasetByName('chrDirTable.tabular', history, history_client)['id'])}] number_of_comparisons = -1 for line in open(comparisons): if not line.isspace(): number_of_comparisons += 1 for comparison in range(0, int(number_of_comparisons)): tool_inputs = { 'foldChangeTable' : {'id': dataset_id, 'src': 'hda'}, 'comparisonNumber' : comparison + 1 } tool_client.run_tool(history['id'], 'cutFoldChangeTable', tool_inputs) while getNumberNotComplete(history['id'], history_client) > 0: time.sleep(10) if argDictionary['species'] in ["Rat","Cow","Horse","Pig","Zebrafish"]: pathwayAnalysisWorkflow = workflow_client.show_workflow('c9468fdb6dc5c5f1') params = dict() for key in pathwayAnalysisWorkflow['steps'].keys(): params[key] = argDictionary if argDictionary['species'] == "Rat": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="ratGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt") if argDictionary['species'] == "Cow": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="cowGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt") if argDictionary['species'] == "Horse": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="horseGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.horse.txt") if argDictionary['species'] == "Pig": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigStringNetwork.txt") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="pigGeneLengths.tabular") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.pig.txt") if argDictionary['species'] == "Zebrafish": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="zebrafishGeneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="HOM_AllOrganism.rpt") pathwayDatamap = {'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}} diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client) for index, diffExpData in enumerate(diffExpDataCollection): numCompleted = getNumberComplete(history['id'], history_client) + 10 print(numCompleted) pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'} workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], inputs = pathwayDatamap, history_id = history['id'], params = params) comparisonDict = getRowFromCsv(comparisons, index) if 'Factor1' in comparisonDict.keys(): comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2'] return_dict = {'accessionNo':argDictionary['accessionNumber'], 'factor':comparisonDict['Factor'], 'comparisonNum':comparisonDict['Numerator'], 'comparisonDenom':comparisonDict['Denominator'], 'foldChange': getUrl(diffExpData['id']), 'interactome': pathwayDatamap['0']['id'], 'exonLength': pathwayDatamap['2']['id']} while getNumberComplete(history['id'], history_client) < numCompleted: time.sleep(10) return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', history, history_client)['id']) return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf', history, history_client)['id']) return_dict['slimEnrichPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular', history, history_client)['id']) return_dict['enrichedDrugsReverse'] = getUrl(getMostRecentDatasetByName('enrichedDrugsReverse.tabular', history, history_client)['id']) return_dict['enrichedDrugsMimic'] = getUrl(getMostRecentDatasetByName('enrichedDrugsMimic.tabular', history, history_client)['id']) return_dict['enrichedTerms'] = getUrl(getMostRecentDatasetByName('enrichedTerms.tabular', history, history_client)['id']) return_dict['enrichedTerms.reduced'] = getUrl(getMostRecentDatasetByName('enrichedTerms.reduced.tabular', history, history_client)['id']) return_dict['GO.MDS'] = getUrl(getMostRecentDatasetByName('GO.MDS.html', history, history_client)['id']) return_collection.append(return_dict) # Hard code keys to define the order keys = ['accessionNo','multiQC','factor','PCA','chrDirTable','comparisonNum','comparisonDenom','foldChange', 'interactome','exonLength','moduleNodes','modulePlots', 'slimEnrichPathways','secretedProteins','enrichedDrugsReverse','enrichedDrugsMimic','enrichedTerms','enrichedTerms.reduced','GO.MDS'] outFileName = 'output/' + argDictionary['accessionNumber'] + '-workflowOutput.tsv' with open(outFileName, 'wb') as csvFile: # Get headers from last dictionary in collection as first doesn't contain all keys csvOutput = csv.DictWriter(csvFile, keys, delimiter = "\t") csvOutput.writeheader() csvOutput.writerows(return_collection) #tool_client.upload_file(outFileName, history['id'], file_type='tsv') return return_collection else: pathwayAnalysisWorkflow = workflow_client.show_workflow('e85a3be143d5905b') params = dict() for key in pathwayAnalysisWorkflow['steps'].keys(): params[key] = argDictionary if argDictionary['species'] == "Mouse": network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="mouseStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="MouseGeneLengths.tab") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt") secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-mouse.txt") pathwayDatamap = {'4' : {'id': secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}} else: network=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="humanStringNetwork") geneLengths=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="geneLengths") homology=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="Homology.mouse.txt") secretedReference=getLibraryToolDataID(history=history,history_client=history_client,library_client=library_client,name="uniprot-secreted-human.txt") pathwayDatamap = {'4' : {'id': secretedReference, 'src': 'hda'},'3' : {'id': homology, 'src': 'hda'},'2' : {'id': network, 'src': 'hda'},'1' : {'id': geneLengths, 'src': 'hda'}} diffExpDataCollection = getDatasetsByName('cutTable.tabular', history, history_client) for index, diffExpData in enumerate(diffExpDataCollection): numCompleted = getNumberComplete(history['id'], history_client) + 14 print(numCompleted) pathwayDatamap["0"] = {'id': diffExpData['id'], 'src': 'hda'} #pathwayDatamap['1'] = {'id': diffExpData['id'], 'src': 'hda'} workflow_client.invoke_workflow(pathwayAnalysisWorkflow['id'], inputs = pathwayDatamap, history_id = history['id'], params = params) comparisonDict = getRowFromCsv(comparisons, index) if 'Factor1' in comparisonDict.keys(): comparisonDict['Factor'] = comparisonDict['Factor1'] + "." + comparisonDict['Factor2'] return_dict = {'accessionNo':argDictionary['accessionNumber'], 'factor':comparisonDict['Factor'], 'comparisonNum':comparisonDict['Numerator'], 'comparisonDenom':comparisonDict['Denominator'], 'foldChange': getUrl(diffExpData['id']), 'interactome': pathwayDatamap['0']['id'], 'exonLength': pathwayDatamap['2']['id']} while getNumberComplete(history['id'], history_client) < numCompleted: time.sleep(10) return_dict['moduleNodes'] = getUrl(getMostRecentDatasetByName('moduleNodes.text', history, history_client)['id']) return_dict['modulePlots'] = getUrl(getMostRecentDatasetByName('modulePlots.pdf', history, history_client)['id']) return_dict['pathways'] = getUrl(getMostRecentDatasetByName('pathways.tabular', history, history_client)['id']) return_dict['enrichPlot'] = getUrl(getMostRecentDatasetByName('enrichmentPlot.png', history, history_client)['id']) return_dict['enrichmentTable'] = getUrl(getMostRecentDatasetByName('TF_EnrichmentTable.tabular', history, history_client)['id']) return_dict['slimEnrichPathways'] = getUrl(getMostRecentDatasetByName('slimEnrichmentPathways.tabular', history, history_client)['id']) return_dict['secretedProteins'] = getUrl(getMostRecentDatasetByName('secretedProteins.tabular', history, history_client)['id']) return_dict['enrichedDrugsReverse'] = getUrl(getMostRecentDatasetByName('enrichedDrugsReverse.tabular', history, history_client)['id']) return_dict['enrichedDrugsMimic'] = getUrl(getMostRecentDatasetByName('enrichedDrugsMimic.tabular', history, history_client)['id']) return_dict['enrichedTerms'] = getUrl(getMostRecentDatasetByName('enrichedTerms.tabular', history, history_client)['id']) return_dict['enrichedTerms.reduced'] = getUrl(getMostRecentDatasetByName('enrichedTerms.reduced.tabular', history, history_client)['id']) return_dict['GO.MDS'] = getUrl(getMostRecentDatasetByName('GO.MDS.html', history, history_client)['id']) return_collection.append(return_dict) # Hard code keys to define the order keys = ['accessionNo','multiQC','factor','PCA','chrDirTable','comparisonNum','comparisonDenom','foldChange', 'interactome','exonLength','moduleNodes','modulePlots','pathways','enrichPlot', 'enrichmentTable', 'slimEnrichPathways','secretedProteins','enrichedDrugsReverse','enrichedDrugsMimic','enrichedTerms','enrichedTerms.reduced','GO.MDS'] outFileName = 'output/' + argDictionary['accessionNumber'] + '-workflowOutput.tsv' with open(outFileName, 'wb') as csvFile: # Get headers from last dictionary in collection as first doesn't contain all keys csvOutput = csv.DictWriter(csvFile, keys, delimiter = "\t") csvOutput.writeheader() csvOutput.writerows(return_collection) return return_collection