def gen_featfilt(tuned=False, glb_filtnames=[]): tuned = tuned or opts.best common_cfg = cfgr('chm_annot', 'common') pr = io.param_reader( os.path.join(PAR_DIR, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) filt_names = [] for filt_name, filter in [ # ('Var Cut', VarianceThreshold()), # ('Chi2 Pval on FPR', SelectFpr(chi2, alpha=0.05)), # ('ANOVA-F Pval on FPR', SelectFpr(f_classif, alpha=0.05)), # ('Chi2 Top K Perc', SelectPercentile(chi2, percentile=30)), # ('ANOVA-F Top K Perc', SelectPercentile(f_classif, percentile=30)), # ('Chi2 Top K', SelectKBest(chi2, k=1000)), # ('ANOVA-F Top K', SelectKBest(f_classif, k=1000)), # ('LinearSVC', LinearSVC(loss='squared_hinge', dual=False, **pr('Classifier', 'LinearSVC') if tuned else {})), # ('Logistic Regression', SelectFromModel(LogisticRegression(dual=False, **pr('Feature Selection', 'Logistic Regression') if tuned else {}))), # ('Lasso', SelectFromModel(LassoCV(cv=6), threshold=0.16)), # ('Lasso-LARS', SelectFromModel(LassoLarsCV(cv=6))), # ('Lasso-LARS-IC', SelectFromModel(LassoLarsIC(criterion='aic'), threshold=0.16)), # ('Randomized Lasso', SelectFromModel(RandomizedLasso(random_state=0))), # ('Extra Trees Regressor', SelectFromModel(ExtraTreesRegressor(100))), # ('U102-GSS502', ftslct.MSelectKBest(ftslct.gen_ftslct_func(ftslct.utopk, filtfunc=ftslct.gss_coef, fn=100), k=500)), # ('GSS502', ftslct.MSelectKBest(ftslct.gss_coef, k=500)), # ('Combined Model', FeatureUnion([('Var Cut', VarianceThreshold()), ('Chi2 Top K', SelectKBest(chi2, k=1000))])), ('No Feature Filtering', None) ]: yield filt_name, filter filt_names.append(filt_name) if (len(glb_filtnames) < len(filt_names)): del glb_filtnames[:] glb_filtnames.extend(filt_names)
def gen_cb_models(tuned=False, glb_filtnames=[], glb_clfnames=[]): tuned = tuned or opts.best common_cfg = cfgr('chm_annot', 'common') pr = io.param_reader( os.path.join(PAR_DIR, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) # filtref_func = ftslct.filtref(os.path.join(spdr.DATA_PATH, 'X.npz'), os.path.join(spdr.DATA_PATH, 'union_filt_X.npz')) for mdl_name, mdl in [ # ('RandomForest', Pipeline([('clf', build_model(RandomForestClassifier, 'Classifier', 'Random Forest', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=1 if opts.mltl else opts.np, random_state=0))])), ('UDT-RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.utopk, filtfunc=ftslct.decision_tree, k=500, fn=100)), ('clf', build_model(RandomForestClassifier, 'Classifier', 'Random Forest', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=1 if opts.mltl else opts.np, random_state=0))])), # ('RandomForest', Pipeline([('featfilt', SelectFromModel(DecisionTreeClassifier(criterion='entropy', class_weight='balanced', random_state=0))), ('clf', build_model(RandomForestClassifier, 'Classifier', 'Random Forest', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=1 if opts.mltl else opts.np, random_state=0))])), # ('RbfSVM102-2', Pipeline([('clf', build_model(SVC, 'Classifier', 'RBF SVM 102-2', tuned=tuned, pr=pr, mltl=opts.mltl, probability=True))])), # ('RbfSVM103-2', Pipeline([('clf', build_model(SVC, 'Classifier', 'RBF SVM 103-2', tuned=tuned, pr=pr, mltl=opts.mltl, probability=True))])), # ('RbfSVM102-3', Pipeline([('clf', build_model(SVC, 'Classifier', 'RBF SVM 102-3', tuned=tuned, pr=pr, mltl=opts.mltl, probability=True))])), # ('RbfSVM103-3', Pipeline([('clf', build_model(SVC, 'Classifier', 'RBF SVM 103-3', tuned=tuned, pr=pr, mltl=opts.mltl, probability=True))])), # ('DF-RbfSVM', Pipeline([('featfilt', ftslct.MSelectOverValue(ftslct.filtref(os.path.join(spdr.DATA_PATH, 'X.npz'), os.path.join(spdr.DATA_PATH, 'union_filt_X.npz'), os.path.join(spdr.DATA_PATH, 'orig_X.npz')))), ('clf', build_model(SVC, 'Classifier', 'RBF SVM', tuned=tuned, pr=pr, mltl=opts.mltl, probability=True))])), ('RbfSVM', Pipeline([('clf', build_model(SVC, 'Classifier', 'RBF SVM', tuned=tuned, pr=pr, mltl=opts.mltl, probability=True))])), # ('L1-LinSVC', Pipeline([('clf', build_model(LinearSVC, 'Classifier', 'LinearSVC', tuned=tuned, pr=pr, mltl=opts.mltl, loss='squared_hinge', dual=False))])), # ('Perceptron', Pipeline([('clf', build_model(Perceptron, 'Classifier', 'Perceptron', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=1 if opts.mltl else opts.np))])), # ('MNB', Pipeline([('clf', build_model(MultinomialNB, 'Classifier', 'MultinomialNB', tuned=tuned, pr=pr, mltl=opts.mltl))])), # ('5NN', Pipeline([('clf', build_model(KNeighborsClassifier, 'Classifier', 'kNN', tuned=tuned, pr=pr, mltl=opts.mltl, n_neighbors=5, n_jobs=1 if opts.mltl else opts.np))])), # ('MEM', Pipeline([('clf', build_model(LogisticRegression, 'Classifier', 'Logistic Regression', tuned=tuned, pr=pr, mltl=opts.mltl, dual=False))])), # ('LinearSVC with L2 penalty [Ft Filt] & Perceptron [CLF]', Pipeline([('featfilt', SelectFromModel(build_model(LinearSVC, 'Feature Selection', 'LinearSVC', tuned=tuned, pr=pr, mltl=opts.mltl, loss='squared_hinge', dual=False, penalty='l2'))), ('clf', build_model(Perceptron, 'Classifier', 'Perceptron', tuned=tuned, pr=pr, n_jobs=opts.np))])), # ('ExtraTrees', Pipeline([('clf', build_model(ExtraTreesClassifier, 'Classifier', 'Extra Trees', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=opts.np))])), # ('Random Forest', Pipeline([('clf', build_model(RandomForestClassifier, 'Classifier', 'Random Forest', tuned=tuned, pr=pr, n_jobs=opts.np, random_state=0))])) ]: yield mdl_name, mdl
def gen_clfs(tuned=False, glb_clfnames=[]): tuned = tuned or opts.best common_cfg = cfgr('chm_annot', 'common') pr = io.param_reader( os.path.join(PAR_DIR, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) clf_names = [] for clf_name, clf in [ # ('RidgeClassifier', RidgeClassifier(tol=1e-2, solver='lsqr')), # ('Perceptron', build_model(Perceptron, 'Classifier', 'Perceptron', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=1 if opts.mltl else opts.np)), # ('Passive-Aggressive', PassiveAggressiveClassifier(n_iter=50, n_jobs=1 if opts.mltl else opts.np)), # ('kNN', KNeighborsClassifier(n_neighbors=100, n_jobs=1 if opts.mltl else opts.np)), # ('NearestCentroid', NearestCentroid()), # ('BernoulliNB', BernoulliNB()), # ('MultinomialNB', MultinomialNB()), # ('ExtraTrees', build_model(ExtraTreesClassifier, 'Classifier', 'Extra Trees', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=opts.np)), ('RandomForest', build_model(RandomForestClassifier, 'Classifier', 'Random Forest', tuned=tuned, pr=pr, mltl=opts.mltl, n_jobs=1 if opts.mltl else opts.np, random_state=0)), # ('RandomForest', Pipeline([('clf', build_model(RandomForestClassifier, 'Classifier', 'Random Forest', tuned=tuned, pr=pr, n_jobs=opts.np, random_state=0))])), # ('BaggingkNN', BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5, n_jobs=1 if opts.mltl else opts.np, random_state=0)), # ('BaggingLinearSVC', build_model(BaggingClassifier, 'Classifier', 'Bagging LinearSVC', tuned=tuned, pr=pr, mltl=opts.mltl, base_estimator=build_model(LinearSVC, 'Classifier', 'LinearSVC', tuned=tuned, pr=pr, mltl=opts.mltl, loss='squared_hinge', dual=False), n_jobs=1 if opts.mltl else opts.np, random_state=0)(LinearSVC(), max_samples=0.5, max_features=0.5)), # ('LinSVM', build_model(LinearSVC, 'Classifier', 'LinearSVC', tuned=tuned, pr=pr, mltl=opts.mltl, loss='squared_hinge', dual=False)), ('RbfSVM', build_model(SVC, 'Classifier', 'RBF SVM', tuned=tuned, pr=pr, mltl=opts.mltl)) ]: yield clf_name, clf clf_names.append(clf_name) if (len(glb_clfnames) < len(clf_names)): del glb_clfnames[:] glb_clfnames.extend(clf_names)
def gen_clf(config, lm_model, lm_config, use_gpu=False, distrb=False, dev_id=None, **kwargs): mdl_name, constraints = config.model, config.cnstrnts.split(',') if hasattr(config, 'cnstrnts') and config.cnstrnts else [] lm_mdl_name = mdl_name.split('_')[0] kwargs.update(dict(config=config, lm_model=lm_model, lm_config=lm_config)) common_cfg = config.common_cfg if hasattr(config, 'common_cfg') else {} wsdir = config.wsdir if hasattr(config, 'wsdir') and os.path.isdir(config.wsdir) else '.' pr = io.param_reader(os.path.join(wsdir, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) params = pr('LM', config.lm_params) if lm_mdl_name != 'none' else {} for pname in ['pretrained_mdl_path', 'pretrained_vocab_path']: if pname in params: del params[pname] lvar = locals() for x in constraints: cnstrnt_cls, cnstrnt_params = copy.deepcopy(C.CNSTRNTS_MAP[x]) constraint_params = pr('Constraint', C.CNSTRNT_PARAMS_MAP[x]) cnstrnt_params.update(dict([((k, p), constraint_params[p]) for k, p in cnstrnt_params.keys() if p in constraint_params])) cnstrnt_params.update(dict([((k, p), kwargs[p]) for k, p in cnstrnt_params.keys() if p in kwargs])) cnstrnt_params.update(dict([((k, p), lvar[p]) for k, p in cnstrnt_params.keys() if p in lvar])) kwargs.setdefault('constraints', []).append((cnstrnt_cls, dict([(k, v) for (k, p), v in cnstrnt_params.items()]))) clf = config.clf[config.encoder](**kwargs) if hasattr(config, 'embed_type') and config.embed_type else config.clf(**kwargs) if use_gpu: clf = _handle_model(clf, dev_id=dev_id, distrb=distrb) return clf
def gen_mdl(config, use_gpu=False, distrb=False, dev_id=None): mdl_name, pretrained = config.model, True if type(config.pretrained) is str and config.pretrained.lower() == 'true' else config.pretrained if mdl_name == 'none': return None, None wsdir = config.wsdir if hasattr(config, 'wsdir') and os.path.isdir(config.wsdir) else '.' common_cfg = config.common_cfg if hasattr(config, 'common_cfg') else {} pr = io.param_reader(os.path.join(wsdir, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) params = pr('LM', config.lm_params) lm_config = config.lm_config(**params) if distrb: import horovod.torch as hvd if (type(pretrained) is str): if (not distrb or distrb and hvd.rank() == 0): logging.info('Using pretrained model from `%s`' % pretrained) checkpoint = torch.load(pretrained, map_location='cpu') model = checkpoint['model'] model.load_state_dict(checkpoint['state_dict']) elif (pretrained): if (not distrb or distrb and hvd.rank() == 0): logging.info('Using pretrained model...') mdl_name = mdl_name.split('_')[0] model = config.lm_model.from_pretrained(params['pretrained_mdl_path'] if 'pretrained_mdl_path' in params else config.lm_mdl_name) else: if (not distrb or distrb and hvd.rank() == 0): logging.info('Using untrained model...') try: for pname in ['pretrained_mdl_path', 'pretrained_vocab_path']: if pname in params: del params[pname] if (mdl_name == 'elmo'): pos_params = [lm_config[k] for k in ['options_file','weight_file', 'num_output_representations']] kw_params = dict([(k, lm_config[k]) for k in lm_config.keys() if k not in ['options_file','weight_file', 'num_output_representations', 'elmoedim']]) logging.info('ELMo model parameters: %s %s' % (pos_params, kw_params)) model = config.lm_model(*pos_params, **kw_params) else: model = config.lm_model(lm_config) except Exception as e: logging.warning(e) logging.warning('Cannot find the pretrained model file, using online model instead.') model = config.lm_model.from_pretrained(config.lm_mdl_name) if (use_gpu): model = model.to('cuda') return model, lm_config
def classify(dev_id=None): # Prepare model related meta data mdl_name = args.model.lower().replace(' ', '_') common_cfg = cfgr('validate', 'common') pr = io.param_reader(os.path.join(PAR_DIR, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) config_kwargs = dict([(k, v) for k, v in args.__dict__.items() if not k.startswith('_') and k not in set(['dataset', 'model', 'template']) and v is not None and not callable(v)]) config = Configurable(args.task, mdl_name, common_cfg=common_cfg, wsdir=PAR_DIR, **config_kwargs) params = pr('LM', config.lm_params) if mdl_name != 'none' else {} use_gpu = dev_id is not None tokenizer = config.tknzr.from_pretrained(params['pretrained_vocab_path'] if 'pretrained_vocab_path' in params else config.lm_mdl_name) if config.tknzr else {} _adjust_encoder(tokenizer, config) # Prepare task related meta data. task_path, task_type, task_dstype, task_cols, task_trsfm, task_extparms = config.input if config.input and os.path.isdir(os.path.join(DATA_PATH, config.input)) else config.task_path, config.task_type, config.task_ds, config.task_col, config.task_trsfm, config.task_ext_params ds_kwargs = config.ds_kwargs # Prepare data if (not config.distrb or config.distrb and hvd.rank() == 0): logging.info('Dataset path: %s' % os.path.join(DATA_PATH, task_path)) train_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'train.%s' % config.fmt), tokenizer, config, **ds_kwargs) # Calculate the class weights if needed lb_trsfm = [x['get_lb'] for x in task_trsfm[1] if 'get_lb' in x] if (not config.weight_class or task_type == 'sentsim'): class_count = None elif len(lb_trsfm) > 0: lb_df = train_ds.df[task_cols['y']].apply(lb_trsfm[0]) class_count = np.array([[1 if lb in y else 0 for lb in train_ds.binlb.keys()] for y in lb_df]).sum(axis=0) else: lb_df = train_ds.df[task_cols['y']] binlb = task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else train_ds.binlb class_count = lb_df.value_counts()[binlb.keys()].values if (class_count is None): class_weights = None sampler = None else: class_weights = torch.Tensor(1.0 / class_count) class_weights /= class_weights.sum() sampler = None # WeightedRandomSampler does not work in new version # sampler = WeightedRandomSampler(weights=class_weights, num_samples=config.bsize, replacement=True) if not config.distrb and type(dev_id) is list: class_weights = class_weights.repeat(len(dev_id)) # Partition dataset among workers using DistributedSampler if config.distrb: sampler = torch.utils.data.distributed.DistributedSampler(train_ds, num_replicas=hvd.size(), rank=hvd.rank()) train_loader = DataLoader(train_ds, batch_size=config.bsize, shuffle=sampler is None and config.droplast, sampler=sampler, num_workers=config.np, drop_last=config.droplast) # Classifier if (not config.distrb or config.distrb and hvd.rank() == 0): logging.info('Language model input fields: %s' % config.input_keys) logging.info('Classifier hyper-parameters: %s' % config.clf_ext_params) logging.info('Classifier task-related parameters: %s' % task_extparms['mdlaware']) if (config.resume): # Load model clf, prv_optimizer, resume, chckpnt = load_model(config.resume) if config.refresh: logging.info('Refreshing and saving the model with newest code...') try: if (not distrb or distrb and hvd.rank() == 0): save_model(clf, prv_optimizer, '%s_%s.pth' % (config.task, config.model)) except Exception as e: logging.warning(e) # Update parameters clf.update_params(task_params=task_extparms['mdlaware'], **config.clf_ext_params) if (use_gpu): clf = _handle_model(clf, dev_id=dev_id, distrb=config.distrb) # Construct optimizer optmzr_cls = config.optmzr if config.optmzr else (torch.optim.Adam, {}, None) optimizer = optmzr_cls[0](clf.parameters(), lr=config.lr, weight_decay=config.wdecay, **optmzr_cls[1]) if config.optim == 'adam' else torch.optim.SGD(clf.parameters(), lr=config.lr, momentum=0.9) if prv_optimizer: optimizer.load_state_dict(prv_optimizer.state_dict()) training_steps = int(len(train_ds) / config.bsize) if hasattr(train_ds, '__len__') else config.trainsteps scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(config.wrmprop*training_steps), num_training_steps=training_steps) if not config.noschdlr and len(optmzr_cls) > 2 and optmzr_cls[2] and optmzr_cls[2] == 'linwarm' else None if (not config.distrb or config.distrb and hvd.rank() == 0): logging.info((optimizer, scheduler)) else: # Build model lm_model, lm_config = gen_mdl(config, use_gpu=use_gpu, distrb=config.distrb, dev_id=dev_id) clf = gen_clf(config, lm_model, lm_config, num_lbs=len(train_ds.binlb) if train_ds.binlb else 1, mlt_trnsfmr=True if task_type in ['entlmnt', 'sentsim'] and task_extparms['mdlaware'].setdefault('sentsim_func', None) is not None else False, task_params=task_extparms['mdlaware'], binlb=train_ds.binlb, binlbr=train_ds.binlbr, use_gpu=use_gpu, distrb=config.distrb, dev_id=dev_id, **config.clf_ext_params) optmzr_cls = config.optmzr if config.optmzr else (torch.optim.Adam, {}, None) optimizer = optmzr_cls[0](clf.parameters(), lr=config.lr, weight_decay=config.wdecay, **optmzr_cls[1]) if config.optim == 'adam' else torch.optim.SGD(clf.parameters(), lr=config.lr, momentum=0.9) training_steps = int(len(train_ds) / config.bsize) if hasattr(train_ds, '__len__') else config.trainsteps scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=config.wrmprop, num_training_steps=training_steps) if not config.noschdlr and len(optmzr_cls) > 2 and optmzr_cls[2] and optmzr_cls[2] == 'linwarm' else None if (not config.distrb or config.distrb and hvd.rank() == 0): logging.info((optimizer, scheduler)) config.execute_all_callback() if config.verbose: logging.debug(config.__dict__) torch.autograd.set_detect_anomaly(True) if config.configfmt == 'yaml': config.to_yaml() else: config.to_json() if config.distrb: # Add Horovod Distributed Optimizer optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=clf.named_parameters()) # Broadcast parameters from rank 0 to all other processes. hvd.broadcast_parameters(clf.state_dict(), root_rank=0) # Training train(clf, optimizer, train_loader, config, scheduler, weights=class_weights, lmcoef=config.lmcoef, clipmaxn=config.clipmaxn, epochs=config.epochs, earlystop=config.earlystop, earlystop_delta=config.es_delta, earlystop_patience=config.es_patience, use_gpu=use_gpu, devq=dev_id, distrb=config.distrb, resume=resume if config.resume else {}) if config.distrb: if hvd.rank() == 0: clf = _handle_model(clf, dev_id=dev_id, distrb=False) else: return if config.noeval: return dev_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'dev.%s' % config.fmt), tokenizer, config, binlb=task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else train_ds.binlb, **ds_kwargs) dev_loader = DataLoader(dev_ds, batch_size=config.bsize, shuffle=False, num_workers=config.np) test_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'test.%s' % config.fmt), tokenizer, config, binlb=task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else train_ds.binlb, **ds_kwargs) test_loader = DataLoader(test_ds, batch_size=config.bsize, shuffle=False, num_workers=config.np) logging.debug(('binlb', train_ds.binlb, dev_ds.binlb, test_ds.binlb)) # Evaluation eval(clf, dev_loader, config, ds_name='dev', use_gpu=use_gpu, devq=dev_id, distrb=config.distrb, ignored_label=task_extparms.setdefault('ignored_label', None)) if config.traindev: train(clf, optimizer, dev_loader, config, scheduler=scheduler, weights=class_weights, lmcoef=config.lmcoef, clipmaxn=config.clipmaxn, epochs=config.epochs, earlystop=config.earlystop, earlystop_delta=config.es_delta, earlystop_patience=config.es_patience, use_gpu=use_gpu, devq=dev_id, distrb=config.distrb) eval(clf, test_loader, config, ds_name='test', use_gpu=use_gpu, devq=dev_id, distrb=config.distrb, ignored_label=task_extparms.setdefault('ignored_label', None))
def multi_clf(dev_id=None): '''Train multiple classifiers and use them to predict multiple set of labels''' import inflect from bionlp.util import fs iflteng = inflect.engine() logging.info('### Multi Classifier Head Mode ###') # Prepare model related meta data mdl_name = args.model.lower().replace(' ', '_') common_cfg = cfgr('validate', 'common') pr = io.param_reader(os.path.join(PAR_DIR, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) config_kwargs = dict([(k, v) for k, v in args.__dict__.items() if not k.startswith('_') and k not in set(['dataset', 'model', 'template']) and v is not None and type(v) is not function]) config = Configurable(args.task, mdl_name, common_cfg=common_cfg, wsdir=PAR_DIR, **config_kwargs) params = pr('LM', config.lm_params) if mdl_name != 'none' else {} use_gpu = dev_id is not None tokenizer = config.tknzr.from_pretrained(params['pretrained_vocab_path'] if 'pretrained_vocab_path' in params else config.lm_mdl_name) if config.tknzr else None task_type = config.task_type _adjust_encoder(tokenizer, config) special_tknids_args = dict(zip(special_tkns[0], special_tknids)) task_trsfm_kwargs = dict(list(zip(special_tkns[0], special_tknids))+[('model',args.model), ('sentsim_func', args.sentsim_func), ('seqlen',args.maxlen)]) # Prepare task related meta data. task_path, task_dstype, task_cols, task_trsfm, task_extparms = args.input if args.input and os.path.isdir(os.path.join(DATA_PATH, args.input)) else config.task_path, config.task_ds, config.task_col, config.task_trsfm, config.task_ext_params trsfms = (task_trsfm[0] if len(task_trsfm) > 0 else []) # trsfms_kwargs = ([] if args.model in LM_EMBED_MDL_MAP else ([{'seqlen':args.maxlen, 'xpad_val':task_extparms.setdefault('xpad_val', 0), 'ypad_val':task_extparms.setdefault('ypad_val', None)}] if TASK_TYPE_MAP[args.task]=='nmt' else [{'seqlen':args.maxlen, 'trimlbs':task_extparms.setdefault('trimlbs', False), 'special_tkns':special_tknids_args}, task_trsfm_kwargs, {'seqlen':args.maxlen, 'xpad_val':task_extparms.setdefault('xpad_val', 0), 'ypad_val':task_extparms.setdefault('ypad_val', None)}])) + (task_trsfm[1] if len(task_trsfm) >= 2 else [{}] * len(task_trsfm[0])) trsfms_kwargs = ([] if hasattr(config, 'embed_type') and config.embed_type else ([{'seqlen':args.maxlen, 'xpad_val':task_extparms.setdefault('xpad_val', 0), 'ypad_val':task_extparms.setdefault('ypad_val', None)}] if config.task_type=='nmt' else [{'seqlen':args.maxlen, 'trimlbs':task_extparms.setdefault('trimlbs', False), 'required_special_tkns':['start_tknids', 'clf_tknids', 'delim_tknids'] if task_type in ['entlmnt', 'sentsim'] and (task_extparms.setdefault('sentsim_func', None) is None or not mdl_name.startswith('bert')) else ['start_tknids', 'clf_tknids'], 'special_tkns':special_tknids_args}, task_trsfm_kwargs, {'seqlen':args.maxlen, 'xpad_val':task_extparms.setdefault('xpad_val', 0), 'ypad_val':task_extparms.setdefault('ypad_val', None)}])) + (task_trsfm[1] if len(task_trsfm) >= 2 else [{}] * len(task_trsfm[0])) ds_kwargs = {'sampw':args.sample_weights, 'sampfrac':args.sampfrac} if task_type == 'nmt': ds_kwargs.update({'lb_coding':task_extparms.setdefault('lb_coding', 'IOB')}) elif task_type == 'entlmnt': ds_kwargs.update(dict((k, task_extparms[k]) for k in ['origlb', 'lbtxt', 'neglbs', 'reflb'] if k in task_extparms)) elif task_type == 'sentsim': ds_kwargs.update({'ynormfunc':task_extparms.setdefault('ynormfunc', None)}) global_all_binlb = {} ext_params = dict([(k, getattr(args, k)) if hasattr(args, k) else (k, v) for k, v in config.clf_ext_params.items()]) if hasattr(config, 'embed_type') and config.embed_type: ext_params['embed_type'] = config.embed_type task_params = dict([(k, getattr(args, k)) if hasattr(args, k) and getattr(args, k) is not None else (k, v) for k, v in task_extparms.setdefault('mdlcfg', {}).items()]) logging.info('Classifier hyper-parameters: %s' % ext_params) logging.info('Classifier task-related parameters: %s' % task_params) orig_epochs = mltclf_epochs = args.epochs elapsed_mltclf_epochs, args.epochs = 0, 1 if (args.resume): # Load model clf, prv_optimizer, resume, chckpnt = load_model(args.resume) if args.refresh: logging.info('Refreshing and saving the model with newest code...') try: save_model(clf, prv_optimizer, '%s_%s.pth' % (args.task, args.model)) except Exception as e: logging.warning(e) elapsed_mltclf_epochs, all_binlb = chckpnt.setdefault('mltclf_epochs', 0), clf.binlb # Update parameters clf.update_params(task_params=task_params, **ext_params) if (use_gpu): clf = _handle_model(clf, dev_id=dev_id, distrb=args.distrb) # optmzr_cls = OPTMZR_MAP.setdefault(args.model.split('_')[0], (torch.optim.Adam, {}, None)) optmzr_cls = config.optmzr if config.optmzr else (torch.optim.Adam, {}, None) optimizer = optmzr_cls[0](clf.parameters(), lr=args.lr, weight_decay=args.wdecay, **optmzr_cls[1]) if args.optim == 'adam' else torch.optim.SGD(clf.parameters(), lr=args.lr, momentum=0.9) if prv_optimizer: optimizer.load_state_dict(prv_optimizer.state_dict()) training_steps = int(len(train_ds) / args.bsize) if hasattr(train_ds, '__len__') else args.trainsteps scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.wrmprop, num_training_steps=training_steps) if not args.noschdlr and len(optmzr_cls) > 2 and optmzr_cls[2] and optmzr_cls[2] == 'linwarm' else None logging.info((optimizer, scheduler)) else: # Build model lm_model = gen_mdl(mdl_name, config, pretrained=True if type(args.pretrained) is str and args.pretrained.lower() == 'true' else args.pretrained, use_gpu=use_gpu, distrb=args.distrb, dev_id=dev_id) if mdl_name != 'none' else None clf = gen_clf(args.model, config, args.encoder, lm_model=lm_model, mlt_trnsfmr=True if task_type in ['entlmnt', 'sentsim'] and task_params.setdefault('sentsim_func', None) is not None else False, task_params=task_params, use_gpu=use_gpu, distrb=args.distrb, dev_id=dev_id, **ext_params) # optmzr_cls = OPTMZR_MAP.setdefault(args.model.split('_')[0], (torch.optim.Adam, {}, None)) optmzr_cls = config.optmzr if config.optmzr else (torch.optim.Adam, {}, None) optimizer = optmzr_cls[0](clf.parameters(), lr=args.lr, weight_decay=args.wdecay, **optmzr_cls[1]) if args.optim == 'adam' else torch.optim.SGD(clf.parameters(), lr=args.lr, momentum=0.9) training_steps = int(len(train_ds) / args.bsize) if hasattr(train_ds, '__len__') else args.trainsteps scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.wrmprop, num_training_steps=training_steps) if not args.noschdlr and len(optmzr_cls) > 2 and optmzr_cls[2] and optmzr_cls[2] == 'linwarm' else None logging.info((optimizer, scheduler)) # Prepare data logging.info('Dataset path: %s' % os.path.join(DATA_PATH, task_path)) num_clfs = min([len(fs.listf(os.path.join(DATA_PATH, task_path), pattern='%s_\d.csv' % x)) for x in ['train', 'dev', 'test']]) for epoch in range(elapsed_mltclf_epochs, mltclf_epochs): logging.info('Global %i epoch(s)...' % epoch) clf.reset_global_binlb() all_binlb = {} for i in range(num_clfs): logging.info('Training on the %s sub-dataset...' % iflteng.ordinal(i+1)) train_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'train_%i.%s' % (i, args.fmt)), task_cols['X'], task_cols['y'], config.encode_func, tokenizer, config, sep='\t', index_col=task_cols['index'], binlb=task_extparms['binlb'] if 'binlb' in task_extparms else None, transforms=trsfms, transforms_kwargs=trsfms_kwargs, mltl=task_extparms.setdefault('mltl', False), **ds_kwargs) new_lbs = [k for k in train_ds.binlb.keys() if k not in all_binlb] all_binlb.update(dict([(k, v) for k, v in zip(new_lbs, range(len(all_binlb), len(all_binlb)+len(new_lbs)))])) if mdl_name.startswith('bert'): train_ds = MaskedLMIterDataset(train_ds) if isinstance(train_ds, BaseIterDataset) else MaskedLMDataset(train_ds) lb_trsfm = [x['get_lb'] for x in task_trsfm[1] if 'get_lb' in x] if (not args.weight_class or task_type == 'sentsim'): class_count = None elif len(lb_trsfm) > 0: lb_df = train_ds.df[task_cols['y']].apply(lb_trsfm[0]) class_count = np.array([[1 if lb in y else 0 for lb in train_ds.binlb.keys()] for y in lb_df]).sum(axis=0) else: lb_df = train_ds.df[task_cols['y']] binlb = task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else train_ds.binlb class_count = lb_df.value_counts()[binlb.keys()].values if (class_count is None): class_weights = None sampler = None else: class_weights = torch.Tensor(1.0 / class_count) class_weights /= class_weights.sum() class_weights *= (args.clswfac[min(len(args.clswfac)-1, i)] if type(args.clswfac) is list else args.clswfac) sampler = WeightedRandomSampler(weights=class_weights, num_samples=args.bsize, replacement=True) if type(dev_id) is list: class_weights = class_weights.repeat(len(dev_id)) train_loader = DataLoader(train_ds, batch_size=args.bsize, shuffle=False, sampler=None, num_workers=args.np, drop_last=args.droplast) dev_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'dev_%i.%s' % (i, args.fmt)), task_cols['X'], task_cols['y'], config.encode_func, tokenizer, config, sep='\t', index_col=task_cols['index'], binlb=task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else all_binlb, transforms=trsfms, transforms_kwargs=trsfms_kwargs, mltl=task_extparms.setdefault('mltl', False), **ds_kwargs) if mdl_name.startswith('bert'): dev_ds = MaskedLMIterDataset(train_ds) if isinstance(train_ds, BaseIterDataset) else MaskedLMDataset(dev_ds) dev_loader = DataLoader(dev_ds, batch_size=args.bsize, shuffle=False, num_workers=args.np) test_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'test_%i.%s' % (i, args.fmt)), task_cols['X'], task_cols['y'], config.encode_func, tokenizer, config, sep='\t', index_col=task_cols['index'], binlb=task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else all_binlb, transforms=trsfms, transforms_kwargs=trsfms_kwargs, mltl=task_extparms.setdefault('mltl', False), **ds_kwargs) if mdl_name.startswith('bert'): test_ds = MaskedLMIterDataset(train_ds) if isinstance(train_ds, BaseIterDataset) else MaskedLMDataset(test_ds) test_loader = DataLoader(test_ds, batch_size=args.bsize, shuffle=False, num_workers=args.np) logging.debug(('binlb', train_ds.binlb, dev_ds.binlb, test_ds.binlb)) # Adjust the model clf.get_linear(binlb=train_ds.binlb, idx=i) # Training on splitted datasets train(clf, optimizer, train_loader, config, special_tknids_args, scheduler=scheduler, pad_val=(task_extparms.setdefault('xpad_val', 0), train_ds.binlb[task_extparms.setdefault('ypad_val', 0)]) if task_type=='nmt' else task_extparms.setdefault('xpad_val', 0), weights=class_weights, lmcoef=args.lmcoef, clipmaxn=args.clipmaxn, epochs=args.epochs, earlystop=args.earlystop, earlystop_delta=args.es_delta, earlystop_patience=args.es_patience, task_type=task_type, task_name=args.task, mdl_name=args.model, use_gpu=use_gpu, devq=dev_id, resume=resume if args.resume else {}, chckpnt_kwargs=dict(mltclf_epochs=epoch)) # Adjust the model clf_trnsfmr = MultiClfTransformer(clf) clf_trnsfmr.merge_linear(num_linear=i+1) clf.linear = _handle_model(clf.linear, dev_id=dev_id, distrb=args.distrb) # Evaluating on the accumulated dev and test sets eval(clf, dev_loader, config, dev_ds.binlbr, special_tknids_args, pad_val=(task_extparms.setdefault('xpad_val', 0), train_ds.binlb[task_extparms.setdefault('ypad_val', 0)]) if task_type=='nmt' else task_extparms.setdefault('xpad_val', 0), task_type=task_type, task_name=args.task, ds_name='dev', mdl_name=args.model, use_gpu=use_gpu, ignored_label=task_extparms.setdefault('ignored_label', None)) eval(clf, test_loader, config, test_ds.binlbr, special_tknids_args, pad_val=(task_extparms.setdefault('xpad_val', 0), train_ds.binlb[task_extparms.setdefault('ypad_val', 0)]) if task_type=='nmt' else task_extparms.setdefault('xpad_val', 0), task_type=task_type, task_name=args.task, ds_name='test', mdl_name=args.model, use_gpu=use_gpu, ignored_label=task_extparms.setdefault('ignored_label', None)) global_all_binlb.update(all_binlb) # clf.binlb = all_binlb # clf.binlbr = dict([(v, k) for k, v in all_binlb.items()]) else: if orig_epochs > 0: try: save_model(clf, optimizer, '%s_%s.pth' % (args.task, args.model), devq=dev_id, distrb=args.distrb) except Exception as e: logging.warning(e) args.epochs = orig_epochs if args.noeval: return dev_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'dev.%s' % args.fmt), task_cols['X'], task_cols['y'], config.encode_func, tokenizer, config, sep='\t', index_col=task_cols['index'], binlb=task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else all_binlb, transforms=trsfms, transforms_kwargs=trsfms_kwargs, mltl=task_extparms.setdefault('mltl', False), **ds_kwargs) if mdl_name.startswith('bert'): dev_ds = MaskedLMIterDataset(train_ds) if isinstance(train_ds, BaseIterDataset) else MaskedLMDataset(dev_ds) dev_loader = DataLoader(dev_ds, batch_size=args.bsize, shuffle=False, num_workers=args.np) test_ds = task_dstype(os.path.join(DATA_PATH, task_path, 'test.%s' % args.fmt), task_cols['X'], task_cols['y'], config.encode_func, tokenizer, config, sep='\t', index_col=task_cols['index'], binlb=task_extparms['binlb'] if 'binlb' in task_extparms and type(task_extparms['binlb']) is not str else all_binlb, transforms=trsfms, transforms_kwargs=trsfms_kwargs, mltl=task_extparms.setdefault('mltl', False), **ds_kwargs) if mdl_name.startswith('bert'): test_ds = MaskedLMIterDataset(train_ds) if isinstance(train_ds, BaseIterDataset) else MaskedLMDataset(test_ds) test_loader = DataLoader(test_ds, batch_size=args.bsize, shuffle=False, num_workers=args.np) # Evaluation eval(clf, dev_loader, config, dev_ds.binlbr, special_tknids_args, pad_val=(task_extparms.setdefault('xpad_val', 0), train_ds.binlb[task_extparms.setdefault('ypad_val', 0)]) if task_type=='nmt' else task_extparms.setdefault('xpad_val', 0), task_type=task_type, task_name=args.task, ds_name='dev', mdl_name=args.model, use_gpu=use_gpu, ignored_label=task_extparms.setdefault('ignored_label', None)) if args.traindev: train(clf, optimizer, dev_loader, config, special_tknids_args, scheduler=scheduler, pad_val=(task_extparms.setdefault('xpad_val', 0), train_ds.binlb[task_extparms.setdefault('ypad_val', 0)]) if task_type=='nmt' else task_extparms.setdefault('xpad_val', 0), weights=class_weights, lmcoef=args.lmcoef, clipmaxn=args.clipmaxn, epochs=orig_epochs, earlystop=args.earlystop, earlystop_delta=args.es_delta, earlystop_patience=args.es_patience, task_type=task_type, task_name=args.task, mdl_name=args.model, use_gpu=use_gpu, devq=dev_id) eval(clf, test_loader, config, test_ds.binlbr, special_tknids_args, pad_val=(task_extparms.setdefault('xpad_val', 0), train_ds.binlb[task_extparms.setdefault('ypad_val', 0)]) if task_type=='nmt' else task_extparms.setdefault('xpad_val', 0), task_type=task_type, task_name=args.task, ds_name='test', mdl_name=args.model, use_gpu=use_gpu, ignored_label=task_extparms.setdefault('ignored_label', None))
def gen_mdl_params(rdtune=False): common_cfg = cfgr('chm_annot', 'common') pr = io.param_reader( os.path.join(PAR_DIR, 'etc', '%s.yaml' % common_cfg.setdefault('mdl_cfg', 'mdlcfg'))) if (rdtune): for mdl_name, mdl, params in [ # ('Logistic Regression', LogisticRegression(dual=False), { # 'param_dist':dict( # penalty=['l1', 'l2'], # C=np.logspace(-5, 5, 11), # tol=np.logspace(-6, 3, 10)), # 'n_iter':30 # }), # ('LinearSVC', LinearSVC(dual=False), { # 'param_dist':dict( # penalty=['l1', 'l2'], # C=np.logspace(-5, 5, 11), # tol=np.logspace(-6, 3, 10)), # 'n_iter':30 # }), # ('Perceptron', Perceptron(), { # 'param_dist':dict( # alpha=np.logspace(-6, 3, 10), # n_iter=stats.randint(3, 20)), # 'n_iter':30 # }), # ('MultinomialNB', MultinomialNB(), { # 'param_dist':dict( # alpha=np.logspace(-6, 3, 10), # fit_prior=[True, False]), # 'n_iter':30 # }), # ('SVM', SVC(), { # 'param_dist':dict( # kernel=['linear', 'rbf', 'poly'], # C=np.logspace(-5, 5, 11), # gamma=np.logspace(-6, 3, 10)), # 'n_iter':30 # }), # ('Extra Trees', ExtraTreesClassifier(random_state=0), { # 'param_dist':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # max_features=np.linspace(0.5, 1, 6).tolist()+['sqrt', 'log2'], # min_samples_leaf=[1]+range(10, 101, 10), # class_weight=['balanced', None]), # 'n_iter':30 # }), ('Random Forest', RandomForestClassifier(random_state=0), { 'param_dist': dict(n_estimators=[50, 100] + range(200, 1001, 200), max_features=np.linspace(0.5, 1, 6).tolist() + ['sqrt', 'log2'], max_depth=[None] + range(10, 101, 10), min_samples_leaf=[1] + range(10, 101, 10), class_weight=['balanced', None]), 'n_iter': 30 }), # ('Bagging LinearSVC', BaggingClassifier(base_estimator=build_model(LinearSVC, 'Classifier', 'LinearSVC', tuned=opts.best, pr=pr, mltl=opts.mltl, loss='squared_hinge', dual=False), random_state=0), { # 'param_dist':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # max_samples=np.linspace(0.5, 1, 6), # max_features=np.linspace(0.5, 1, 6), # bootstrap=[True, False], # bootstrap_features=[True, False]), # 'n_iter':30 # }), # ('AdaBoost LinearSVC', AdaBoostClassifier(base_estimator=build_model(SVC, 'Classifier', 'SVM', tuned=opts.best, pr=pr, mltl=opts.mltl), algorithm='SAMME', random_state=0), { # 'param_dist':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # learning_rate=np.linspace(0.5, 1, 6)), # 'n_iter':30 # }), # ('GB LinearSVC', GradientBoostingClassifier(random_state=0), { # 'param_dist':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # subsample = np.linspace(0.5, 1, 6), # max_features=np.linspace(0.5, 1, 6).tolist()+['sqrt', 'log2'], # min_samples_leaf=[1]+range(10, 101, 10), # learning_rate=np.linspace(0.5, 1, 6), # loss=['deviance', 'exponential']), # 'n_iter':30 # }), # ('UGSS & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.utopk, filtfunc=ftslct.gss_coef, fn=4000)), ('clf', RandomForestClassifier())]), { # 'param_dist':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')), # 'n_iter':8 # }), ]: yield mdl_name, mdl, params else: for mdl_name, mdl, params in [ # ('Logistic Regression', LogisticRegression(dual=False), { # 'param_grid':dict( # penalty=['l1', 'l2'], # C=np.logspace(-5, 5, 11), # tol=np.logspace(-6, 3, 10)) # }), # ('LinearSVC', LinearSVC(dual=False), { # 'param_grid':dict( # penalty=['l1', 'l2'], # C=np.logspace(-5, 5, 11), # tol=np.logspace(-6, 3, 10)) # }), # ('Perceptron', Perceptron(), { # 'param_grid':dict( # alpha =np.logspace(-5, 5, 11), # n_iter=range(3, 20, 3)) # }), # ('MultinomialNB', MultinomialNB(), { # 'param_grid':dict( # alpha=np.logspace(-6, 3, 10), # fit_prior=[True, False]) # }), # ('SVM', SVC(), { # 'param_grid':dict( # kernel=['linear', 'rbf', 'poly'], # C=np.logspace(-5, 5, 11), # gamma=np.logspace(-6, 3, 10)) # }), # ('Extra Trees', ExtraTreesClassifier(random_state=0), { # 'param_grid':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # max_features=np.linspace(0.5, 1, 6).tolist()+['sqrt', 'log2'], # min_samples_leaf=[1]+range(10, 101, 10), # class_weight=['balanced', None]) # }), ('Random Forest', RandomForestClassifier(random_state=0), { 'param_grid': dict(n_estimators=[50, 100] + range(200, 1001, 200), max_features=np.linspace(0.5, 1, 6).tolist() + ['sqrt', 'log2'], max_depth=[None] + range(10, 101, 10), min_samples_leaf=[1] + range(10, 101, 10), class_weight=['balanced', None]) }), # ('Bagging LinearSVC', BaggingClassifier(base_estimator=build_model(LinearSVC, 'Classifier', 'LinearSVC', tuned=opts.best, pr=pr, mltl=opts.mltl, loss='squared_hinge', dual=False), random_state=0), { # 'param_grid':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # max_samples=np.linspace(0.5, 1, 6), # max_features=np.linspace(0.5, 1, 6), # bootstrap=[True, False], # bootstrap_features=[True, False]) # }), # ('AdaBoost LinearSVC', AdaBoostClassifier(base_estimator=build_model(SVC, 'Classifier', 'SVM', tuned=opts.best, pr=pr, mltl=opts.mltl), algorithm='SAMME', random_state=0), { # 'param_grid':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # learning_rate=np.linspace(0.5, 1, 6)) # }), # ('GB LinearSVC', GradientBoostingClassifier(random_state=0), { # 'param_grid':dict( # n_estimators=[50, 100] + range(200, 1001, 200), # subsample = np.linspace(0.5, 1, 6), # max_features=np.linspace(0.5, 1, 6).tolist()+['sqrt', 'log2'], # min_samples_leaf=[1]+range(10, 101, 10), # learning_rate = np.linspace(0.5, 1, 6), # loss=['deviance', 'exponential']) # }), # ('UDT & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.utopk, filtfunc=ftslct.decision_tree, fn=4000)), ('clf', RandomForestClassifier())]), { # 'param_grid':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')) # }), # ('DT & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.decision_tree)), ('clf', RandomForestClassifier())]), { # 'param_grid':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')) # }), # ('UNGL & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.utopk, filtfunc=ftslct.ngl_coef, fn=4000)), ('clf', RandomForestClassifier())]), { # 'param_grid':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')) # }), # ('NGL & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.ngl_coef)), ('clf', RandomForestClassifier())]), { # 'param_grid':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')) # }), # ('UGSS & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.utopk, filtfunc=ftslct.gss_coef, fn=4000)), ('clf', RandomForestClassifier())]), { # 'param_grid':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')) # }), # ('GSS & RF', Pipeline([('featfilt', ftslct.MSelectKBest(ftslct.gss_coef)), ('clf', RandomForestClassifier())]), { # 'param_grid':dict( # featfilt__k=np.logspace(np.log2(250), np.log2(32000), 8, base=2).astype('int')) # }) ]: yield mdl_name, mdl, params