Пример #1
0
    def animate(self, nb_frames=80, show_now=True, **kwargs):
        """
        Animate solution with bioviz
        :param nb_frames: Number of frames in the animation. (integer)
        :param show_now: If updates must be automatically done (True) or not (False)
        """
        try:
            import bioviz
        except ModuleNotFoundError:
            raise RuntimeError("bioviz must be install to animate the model")
        check_version(bioviz, "2.0.1", "2.1.0")
        data_interpolate, data_control = Data.get_data(
            self.ocp, self.sol["x"], integrate=False, interpolate_nb_frames=nb_frames
        )
        if not isinstance(data_interpolate["q"], (list, tuple)):
            data_interpolate["q"] = [data_interpolate["q"]]

        all_bioviz = []
        for idx_phase, data in enumerate(data_interpolate["q"]):
            all_bioviz.append(bioviz.Viz(loaded_model=self.ocp.nlp[idx_phase].model, **kwargs))
            all_bioviz[-1].load_movement(self.ocp.nlp[idx_phase].mapping["q"].expand.map(data))

        if show_now:
            b_is_visible = [True] * len(all_bioviz)
            while sum(b_is_visible):
                for i, b in enumerate(all_bioviz):
                    if b.vtk_window.is_active:
                        b.update()
                    else:
                        b_is_visible[i] = False
        else:
            return all_bioviz
plt.figure("Q_dot")
for i in range(q_ac.shape[0]):
    plt.subplot(2, 3, i + 1)
    plt.plot(t, qdot_ac[i, :])
    plt.plot(t, qdot_ip[i, :])
    plt.plot(t, q_dot_ref[i, :])
    plt.title(q_name[i])
plt.legend(labels=['Acados', 'Ipopt', 'EKF'],
           bbox_to_anchor=(1.05, 1),
           loc='upper left',
           borderaxespad=0.)
# plt.show()

plt.figure("Muscles activations")
for i in range(u_ac.shape[0]):
    plt.subplot(4, 5, i + 1)
    plt.step(t, u_ac[i, :])
    plt.step(t, u_ip[i, :])
    plt.step(t, emg_treat[i, :], color='r')
    plt.title(biorbd_model.muscleNames()[i].to_string())
plt.legend(labels=['Acados', 'Ipopt', 'Target'],
           bbox_to_anchor=(1.05, 1),
           loc='upper left',
           borderaxespad=0.)
plt.show()
import bioviz
b = bioviz.Viz(model_path=model_path + model)
b.load_movement(q_ac)
b.exec()
Пример #3
0
    def animate(self,
                n_frames: int = 0,
                shooting_type: Shooting = None,
                show_now: bool = True,
                **kwargs: Any) -> Union[None, list]:
        """
        Animate the simulation

        Parameters
        ----------
        n_frames: int
            The number of frames to interpolate to. If the value is 0, the data are merged to a one phase if possible.
            If the value is -1, the data is not merge in one phase
        shooting_type: Shooting
            The Shooting type to animate
        show_now: bool
            If the bioviz exec() function should be called automatically. This is blocking method
        kwargs: Any
            Any parameters to pass to bioviz

        Returns
        -------
            A list of bioviz structures (one for each phase). So one can call exec() by hand
        """

        try:
            import bioviz
        except ModuleNotFoundError:
            raise RuntimeError("bioviz must be install to animate the model")
        check_version(bioviz, "2.1.1", "2.2.0")

        data_to_animate = self.integrate(
            shooting_type=shooting_type) if shooting_type else self.copy()
        if n_frames == 0:
            try:
                data_to_animate = data_to_animate.interpolate(sum(self.ns))
            except RuntimeError:
                pass

        elif n_frames > 0:
            data_to_animate = data_to_animate.interpolate(n_frames)

        states = data_to_animate.states
        if not isinstance(states, (list, tuple)):
            states = [states]

        all_bioviz = []
        for idx_phase, data in enumerate(states):
            # Convert parameters to actual values
            nlp = self.ocp.nlp[idx_phase]
            for param in nlp.parameters:
                if param.function:
                    param.function(nlp.model, self.parameters[param.name],
                                   **param.params)

            all_bioviz.append(
                bioviz.Viz(
                    self.ocp.nlp[idx_phase].model.path().absolutePath().
                    to_string(), **kwargs))
            all_bioviz[-1].load_movement(
                self.ocp.nlp[idx_phase].variable_mappings["q"].to_second.map(
                    data["q"]))

        if show_now:
            b_is_visible = [True] * len(all_bioviz)
            while sum(b_is_visible):
                for i, b in enumerate(all_bioviz):
                    if b.vtk_window.is_active:
                        b.update()
                    else:
                        b_is_visible[i] = False
            return None
        else:
            return all_bioviz
Пример #4
0
    # -- Plot Q -- #
    q_new = np.ndarray((biorbd_model.nbQ(), len(markersOverFrames)))
    qdot_new = np.ndarray((biorbd_model.nbQ(), len(markersOverFrames)))
    for k in range(q_recons.shape[0]):
        b = np.poly1d(np.polyfit(t, q_recons[k, :], 4))
        c = np.poly1d(np.polyfit(t, q_dot_recons[k, :], 4))
        q_new[k, :] = b(t)
        qdot_new[k, :] = c(t)

    for k in range(q_recons.shape[0]):
        plt.subplot(5, 4, k+1)
        plt.plot(t, q_recons[k, :])
        # plt.plot(t, q_dot_recons[k, :])
        # plt.plot(t, qdot_new[k, :])
        plt.plot(t, q_new[k, :])
    plt.show()
    if bioviz_found:
        b = bioviz.Viz(loaded_model=biorbd_model)
        b.load_movement(q_new)
        b.exec()


    # Save initial states in .mat file
    emg_norm = reduce(marker_treat.shape[2], emg_norm)[0]
    # x_init = np.concatenate((q_recons, q_dot_recons, emg_norm))
    x_init = np.concatenate((q_new, qdot_new, emg_norm))
    dic[f'x_init_{tries}'] = x_init
    dic[f't_final_{tries}'] = t_final
sio.savemat(data_path + f"sujet_5/states_init_{data}.mat", dic)

    sol = ocp.solve(
        solver=Solver.
        ACADOS,  # FULL_CONDENSING_QPOASES, "PARTIAL_CONDENSING_HPIPM"
        solver_options={
            "qp_solver": "PARTIAL_CONDENSING_HPIPM",
            "integrator_type": "IRK",
            "nlp_solver_max_iter": 50,
            "sim_method_num_steps": 2,
            "nlp_solver_tol_ineq": float("1e%d" % -i),
            "nlp_solver_tol_stat": float("1e%d" % -i),
            "nlp_solver_tol_comp": float("1e%d" % -i),
            "nlp_solver_tol_eq": float("1e%d" % -i)
        })
    # --- Get the results --- #
    states, controls, params = Data.get_data(ocp, sol, get_parameters=True)

    # --- show reults --- #
    # result = ShowResult(ocp, sol)
    # result.graphs()
    # result.animate()
    q = sol['qqdot'][1:3, :]
    length = params["gravity_z"][0, 0]
    print(length)
    import bioviz
    b = bioviz.Viz(
        model_path=
        "/home/amedeo/Documents/programmation/marker_emg_tracking/models/pendulum.bioMod"
    )
    b.load_movement(q)
    b.exec()
    pn, pn, idx_segment_bow_hair, rt_on_string)
custom_rt = Function("custom_rt", [pn.nlp.q], [pn.val]).expand()
ObjectiveFcn.Mayer.SUPERIMPOSE_MARKERS.value[0](pn, pn, tag_bow_contact,
                                                tag_violin)
superimpose = Function("superimpose", [pn.nlp.q], [pn.val]).expand()


def objective_function(x, *args, **kwargs):
    out = np.ndarray((6, ))
    out[:3] = np.array(custom_rt(x))[:, 0]
    out[3:] = np.array(superimpose(x))[:, 0]
    return out


b = bioviz.Viz(loaded_model=m,
               markers_size=0.003,
               show_markers=True,
               show_meshes=False)
x0 = np.zeros(m.nbDof(), )
if bow_place == "frog":
    bounds[0][-1] = -0.0701
    bounds[1][-1] = -0.0699
else:
    bounds[0][-1] = -0.551
    bounds[1][-1] = -0.549
x0 = np.mean(bounds, axis=0)
pos = optimize.least_squares(objective_function, x0=x0, bounds=bounds)
print(
    f"Optimal Q for the bow at {bow_place} on {string_to_test} string is:\n{pos.x}\n"
    f"with cost function = {objective_function(pos.x)}")
b.set_q(pos.x)
b.exec()
Пример #7
0
                plt.subplot(2, 3, i + 1)
                plt.plot(t, qdot[i, :], c='purple')
                plt.title(q_name[i])

            # plt.figure("Tau")
            # for i in range(q.shape[0]):
            #     plt.subplot(2, 3, i + 1)
            #     plt.plot(t, tau[i, :], c='orange')
            #     plt.title(biorbd_model.muscleNames()[i].to_string())

            plt.figure("Muscles controls")
            for i in range(u.shape[0]):
                plt.subplot(4, 5, i + 1)
                plt.step(t, u[i, :], c='orange')
                plt.plot(t, a[i, :], c='purple')
                plt.title(biorbd_model.muscleNames()[i].to_string())
            plt.legend(labels=['excitations', "activations"],
                       bbox_to_anchor=(1.05, 1),
                       loc='upper left',
                       borderaxespad=0.)
            plt.show()

            b = bioviz.Viz(model_path="arm_wt_rot_scap.bioMod")
            b.load_movement(q)
            b.exec()

        # --- Show results --- #
        result = ShowResult(ocp, sol)
        result.graphs()
        # result.animate()
Пример #8
0
# Dispatch markers in biorbd structure so EKF can use it
markersOverFrames = []
for i in range(markers.shape[2]):
    markersOverFrames.append(
        [biorbd.NodeSegment(m) for m in markers[:, :, i].T])

# Create a Kalman filter structure
freq = 100  # Hz
params = biorbd.KalmanParam(freq)
kalman = biorbd.KalmanReconsMarkers(model, params)

# Perform the kalman filter for each frame (the first frame is much longer than the next)
Q = biorbd.GeneralizedCoordinates(model)
Qdot = biorbd.GeneralizedVelocity(model)
Qddot = biorbd.GeneralizedAcceleration(model)
q_recons = np.ndarray((model.nbQ(), len(markersOverFrames)))
for i, targetMarkers in enumerate(markersOverFrames):
    kalman.reconstructFrame(model, targetMarkers, Q, Qdot, Qddot)
    q_recons[:, i] = Q.to_array()

    # Print the kinematics to the console
    print(
        f"Frame {i}\nExpected Q = {target_q[:, i]}\nCurrent Q = {q_recons[:, i]}\n"
    )

# Animate the results if biorbd viz is installed
if biorbd_viz_found:
    b = bioviz.Viz(loaded_model=model)
    b.load_movement(q_recons)
    b.exec()
Пример #9
0
           "-",
           color="#1f77b4",
           label="Mass Force")
axs_2.axvline(x=5, color="k", linewidth=0.8, alpha=0.6, linestyle=(0, (5, 5)))
axs_2.set_xlabel("Time [s]").set_fontsize(16)
axs_2.set_ylabel("Mass force actuation\n[N]", color="#1f77b4").set_fontsize(16)
axs_2.tick_params(axis="y", labelcolor="#1f77b4")

ax2 = axs_2.twinx()
ax2.plot(0, 0, "-", color="#1f77b4", label="Mass Force")
ax2.step(time_vector[:-1],
         -10 * q[0, :-1],
         "-",
         color="#2ca02c",
         label="Spring Force")
ax2.set_ylabel("Spring external force\n[N]", color="#2ca02c").set_fontsize(16)
ax2.tick_params(axis="y", labelcolor="#2ca02c")

try:
    os.mkdir(root_path + "figure")
except FileExistsError:
    pass
plt.savefig("figure/Mass_Pendulum_Fext.eps", format="eps")
plt.show()

print("RMS q_m - q*_m : ", np.std(q[0, 51:] - 0.5))

b = bioviz.Viz(model_path)
b.load_movement(q)
b.exec()
Пример #10
0
 def show(self, q):
     import bioviz
     b = bioviz.Viz(self.models[0].path().absolutePath().to_string())
     b.set_q(q if len(q.shape) == 1 else q[:, 0])
     b.exec()
Пример #11
0
import scipy.io as sio
import seaborn
from utils import *
import bioviz
import matplotlib.pyplot as plt

biorbd_model = biorbd.Model("arm_wt_rot_scap.bioMod")

# Define folder and status file
fold_w_emg = f"solutions/w_track_emg_rt_exc/"
# Get data for optimal (track EMG) movement
mat_content = sio.loadmat(f"{fold_w_emg}track_mhe_w_EMG_excitation_driven_co_lvl0_noise_lvl_0_0.mat")
X_est = mat_content["X_est"]
q_est = np.mean(X_est[:, : biorbd_model.nbQ(), :], axis=0)
b = bioviz.Viz("arm_wt_rot_scap.bioMod")
b.load_movement(q_est)
b.vtk_window.change_background_color((1, 1, 1))
b.exec()
Пример #12
0
    dic = {
        "x_est": x_est,
        "u_est": u_est,
        "x_ref": x_ref,
        "x_init": x_wt_noise,
        "u_ref": u_ref,
        "time_per_mhe": toc / ceil(ns / rt_ratio - ns_mhe),
        "time_tot": toc,
        "q_noise": q_noise,
        "N_mhe": ns_mhe,
        "N_tot": ns,
        "rt_ratio": rt_ratio,
        "f_est": force_est,
        "f_ref": force_ref,
    }
    sio.savemat(f"data/MHE_results.mat", dic)
    duration = 1
    t = 8
    ns = 800

    print("*********************************************")
    print(f"Problem solved with Acados")
    print(f"Solving time : {dic['time_tot']}s")
    print(f"Solving frequency : {1/dic['time_per_mhe']}s")

    # ------ Animate ------ #
    b = bioviz.Viz(model)
    b.load_movement(x_est[:biorbd_model.nbQ(), :])
    b.exec()