Пример #1
0
def _get_bird_or_bicycle_label_to_examples():
    dataset_iter = bird_or_bicycle.get_iterator('test')
    label_to_examples = {0: [], 1: []}

    for x_np, y_np, _ in dataset_iter:
        for x, label in zip(x_np, y_np):
            label_to_examples[label].append(x)

    return label_to_examples
def test_spatial_speed():
  # Keras isn't being found by travis for some reason
  from tensorflow.keras.applications.resnet50 import preprocess_input

  # Variable scoping lets us use our _graph in our model_fn
  _graph = tf.Graph()
  with _graph.as_default():
    k_model = tf.keras.applications.resnet50.ResNet50(
      include_top=True, weights='imagenet', input_tensor=None,
      input_shape=None, pooling=None, classes=1000)

  def undefended_keras_model_fn(x_np):
    """A normal keras resnet that was pretrained on ImageNet"""
    x_np = preprocess_input(x_np * 255)

    with _graph.as_default():
      prob1000 = k_model.predict_on_batch(x_np) / 10

    # Keras returns softmax-ed probs, we convert them back to logits
    fake_logits1000 = np.log(prob1000)

    bird_max_logit = np.max(
      fake_logits1000[:, CLASS_NAME_TO_IMAGENET_CLASS['bird']], axis=1)
    bicycle_max_logit = np.max(
      fake_logits1000[:, CLASS_NAME_TO_IMAGENET_CLASS['bicycle']], axis=1)

    two_class_logits = np.concatenate((
      bicycle_max_logit[:, None],
      bird_max_logit[:, None]),
      axis=1)
    return two_class_logits

  # Set up standard attack params
  bird_or_bicycle_shape = (224, 224, 3)
  bird_or_bicycle_spatial_limits = [18, 18, 30]
  bird_or_bicycle_black_border_size = 20

  grid_granularity = [5, 5, 31]
  model_fn = undefended_keras_model_fn

  spatial_attack = attacks.FastSpatialGridAttack(
    model_fn,
    image_shape_hwc=bird_or_bicycle_shape,
    spatial_limits=bird_or_bicycle_spatial_limits,
    grid_granularity=grid_granularity,
    black_border_size=bird_or_bicycle_black_border_size,
  )

  ds_size = 32
  spatial_attack._stop_after_n_datapoints = ds_size
  dataset_iter = bird_or_bicycle.get_iterator(
    'train', batch_size=32, verify_dataset=False)
  return evaluate_two_class_unambiguous_model(
    model_fn, dataset_iter,
    model_name='undefended_keras_resnet_test_spatial',
    attack_list=[spatial_attack])
def evaluate_bird_or_bicycle_model(model_fn, dataset_iter=None, model_name=None):
  """
  Evaluates a bird_or_bicycle classifier on a default set of attacks and creates plots
  :param model_fn: A function mapping images to logits
  :param dataset_iter: An iterable that returns (batched_images, batched_labels, image_ids)
  :param model_name: An optional model_fn name
  """
  if dataset_iter is None:
    dataset_iter = bird_or_bicycle.get_iterator('test')

  bird_or_bicycle_shape = (224, 224, 3)
  bird_or_bicycle_spatial_limits = [18, 18, 30]
  bird_or_bicycle_black_border_size = 20  # TODO: What should the border size be here?

  attack_list = [
    attacks.CleanData(),

    attacks.SpatialGridAttack(
      image_shape_hwc=bird_or_bicycle_shape,
      spatial_limits=bird_or_bicycle_spatial_limits,
      grid_granularity=[5, 5, 31],
      black_border_size=bird_or_bicycle_black_border_size,
    ),

    attacks.SpsaWithRandomSpatialAttack(
      model_fn,
      image_shape_hwc=bird_or_bicycle_shape,
      spatial_limits=bird_or_bicycle_spatial_limits,
      black_border_size=0,
      epsilon=(16. / 255),
      num_steps=200,
      batch_size=32
    ),
  ]

  boundary_attack = attacks.BoundaryWithRandomSpatialAttack(
    model_fn,
    max_l2_distortion=10,
    label_to_examples=_get_bird_or_bicycle_label_to_examples(),
    spatial_limits=bird_or_bicycle_spatial_limits,
    black_border_size=bird_or_bicycle_black_border_size,
    image_shape_hwc=bird_or_bicycle_shape,
  )

  # We limit the boundary attack to the first 100 datapoints to speed up eval
  boundary_attack._stop_after_n_datapoints = 100
  attack_list.append(boundary_attack)

  attack_list = [attacks.CleanData()]

  return evaluate_two_class_unambiguous_model(
    model_fn, dataset_iter,
    model_name=model_name,
    attack_list=attack_list)
Пример #4
0
def test_common_corruptions():
    model_fn = create_undefended_keras_model_fn()
    severity = 1
    spatial_attack = attacks.CommonCorruptionsAttack(severity=severity)

    ds_size = 10
    spatial_attack._stop_after_n_datapoints = ds_size
    dataset_iter = bird_or_bicycle.get_iterator('train',
                                                batch_size=2,
                                                verify_dataset=False)
    return evaluate_two_class_unambiguous_model(
        model_fn,
        dataset_iter,
        model_name='test_common_corruption,severity=%s' % severity,
        attack_list=[spatial_attack])
def test_simple_spatial():
    # Set up standard attack params
    bird_or_bicycle_spatial_limits = [18, 18, 30]

    grid_granularity = [5, 5, 31]
    model_fn = create_undefended_keras_model_fn()

    spatial_attack = attacks.SimpleSpatialAttack(
        spatial_limits=bird_or_bicycle_spatial_limits,
        grid_granularity=grid_granularity,
        black_border_frac=0.15,
    )

    ds_size = 4
    spatial_attack._stop_after_n_datapoints = ds_size
    dataset_iter = bird_or_bicycle.get_iterator('train',
                                                batch_size=2,
                                                verify_dataset=False)

    evaluate_two_class_unambiguous_model(model_fn,
                                         dataset_iter,
                                         model_name='test_spatial',
                                         attack_list=[spatial_attack])
Пример #6
0
def get_tiny_iterator():
  """An iterator with a single sample"""
  dataset_iter = bird_or_bicycle.get_iterator('test', batch_size=1)
  return itertools.islice(dataset_iter, 1)