Пример #1
0
    def materialize_model(self, model_path, gpu_to_use=0):

        model_fname = os.path.basename(model_path)
        
        # Extract model properties
        # from the model filename:
        self.model_props  = FileUtils.parse_filename(model_fname)
        model = NetUtils.get_net(
            self.model_props['net_name'],
            num_classes=self.model_props['num_classes'],
            pretrained=False,
            freeze=0,
            to_grayscale=self.model_props['to_grayscale']
            )

        try:
            if torch.cuda.is_available():
                self.model.load_state_dict(torch.load(self.model_path))
                FileUtils.to_device(model, 'gpu', gpu_to_use)
            else:
                self.model.load_state_dict(torch.load(
                    model_path,
                    map_location=torch.device('cpu')
                    ))
        except RuntimeError as e:
            emsg = repr(e)
            if emsg.find("size mismatch for conv1") > -1:
                emsg += " Maybe model was trained with to_grayscale=False, but local net created for grayscale?"
                raise RuntimeError(emsg) from e

        return model
Пример #2
0
 def test_densenet(self):
     num_pretrained_layers = 6
     #trainer = BirdTrainer(self.tst_config)
     model = NetUtils.get_net(
         'densenet161',
         num_classes=self.num_classes,  # num_classes
         num_layers_to_retain=num_pretrained_layers,
         to_grayscale=True)
     self.assertEqual(model.state_dict()['features.conv0.weight'].shape,
                      torch.Size([96, 1, 7, 7]))
     self.assertEqual(model.classifier.out_features, 4)
Пример #3
0
    def test_resnet(self):

        num_pretrained_layers = 6
        model = NetUtils.get_net(
            'resnet18',
            num_classes=self.num_classes,  # num_classes
            num_layers_to_retain=num_pretrained_layers,
            to_grayscale=True)
        self.assertEqual(model.state_dict()['conv1.weight'].shape,
                         torch.Size([64, 1, 7, 7]))

        self.assertEqual(model.fc.out_features, 4)
Пример #4
0
 def _instantiate_model(self, run_path_str=None, config=None):
     '''
     Returns a model based on information in 
     the config structure, or the info encoded
     in the run_path_str file name. 
     
     One of run_path_str or config must be non-None.
     If both are non-None, uses config.
     
     File paths that encode run parameters look like
     this horror:
     
     model_2021-03-11T10_59_02_net_resnet18_pretrain_0_lr_0.01_opt_SGD_bs_64_ks_7_folds_0_gray_True_classes_10.pth 
     
     :param run_path_str: a path name associated with
         a model. 
     :type run_path_str:
     :param config: run configuration structure 
     :type config: NeuralNetConfig
     :return: a model 
     :rtype: torch.nn.module
     '''
     if config is None:
         # Get a dict with info 
         # in a standard (horrible) file name:
         fname_props = FileUtils.parse_filename(run_path_str)
     else:
         fname_props = config.Training
         data_root   = config.Paths.root_train_test_data
         class_names = FileUtils.find_class_names(data_root)
         fname_props['classes'] = len(class_names)
         fname_props['pretrain'] = config.Training.getint('freeze', 0)
     
     model = NetUtils.get_net(net_name=fname_props['net_name'],
                              num_classes=fname_props['classes'],
                              freeze=fname_props['pretrain'],
                              to_grayscale=fname_props['to_grayscale']
                              )
     return model
Пример #5
0
    def initialize_model(self):
        self.model = NetUtils.get_net(self.net_name,
                                      num_classes=self.num_classes,
                                      pretrained=self.pretrained,
                                      freeze=self.freeze,
                                      to_grayscale=self.to_grayscale)
        self.log.debug(
            f"Before any gpu push: \n{'none--on CPU' if self.fastest_device.type == 'cpu' else torch.cuda.memory_summary()}"
        )

        FileUtils.to_device(self.model, 'gpu')

        self.log.debug(
            f"Before after model push: \n{'none--on CPU' if self.fastest_device.type == 'cpu' else torch.cuda.memory_summary()}"
        )

        self.opt_name = self.config.Training.get('optimizer',
                                                 'Adam')  # Default
        self.optimizer = self.get_optimizer(self.opt_name, self.model, self.lr)

        self.loss_fn = nn.CrossEntropyLoss()
        self.scheduler = optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, self.min_epochs)
Пример #6
0
    def __init__(self, config_info, debugging=False):
        '''
        Constructor
        '''

        self.log = LoggingService()
        if debugging:
            self.log.logging_level = DEBUG

        self.curr_dir = os.path.dirname(os.path.abspath(__file__))

        try:
            self.config = self.initialize_config_struct(config_info)
        except Exception as e:
            msg = f"During config init: {repr(e)}"
            self.log.err(msg)
            raise RuntimeError(msg) from e

        try:
            self.root_train_test_data = self.config.getpath(
                'Paths', 'root_train_test_data', relative_to=self.curr_dir)
        except ValueError as e:
            raise ValueError(
                "Config file must contain an entry 'root_train_test_data' in section 'Paths'"
            ) from e

        self.batch_size = self.config.getint('Training', 'batch_size')
        self.kernel_size = self.config.getint('Training', 'kernel_size')
        self.min_epochs = self.config.Training.getint('min_epochs')
        self.max_epochs = self.config.Training.getint('max_epochs')
        self.lr = self.config.Training.getfloat('lr')
        self.net_name = self.config.Training.net_name
        self.pretrained = self.config.Training.getboolean('pretrained', False)
        self.freeze = self.config.Training.getint('freeze', 0)
        self.to_grayscale = self.config.Training.getboolean(
            'to_grayscale', True)

        self.set_seed(42)

        self.log.info("Parameter summary:")
        self.log.info(f"network     {self.net_name}")
        self.log.info(f"pretrained  {self.pretrained}")
        if self.pretrained:
            self.log.info(f"freeze      {self.freeze}")
        self.log.info(f"min epochs  {self.min_epochs}")
        self.log.info(f"max epochs  {self.max_epochs}")
        self.log.info(f"batch_size  {self.batch_size}")

        self.fastest_device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.num_classes = self.find_num_classes(self.root_train_test_data)

        self.model = NetUtils.get_net(self.net_name,
                                      num_classes=self.num_classes,
                                      pretrained=self.pretrained,
                                      freeze=self.freeze,
                                      to_grayscale=self.to_grayscale)
        self.log.debug(
            f"Before any gpu push: \n{'none--on CPU' if self.fastest_device.type == 'cpu' else torch.cuda.memory_summary()}"
        )

        FileUtils.to_device(self.model, 'gpu')

        self.log.debug(
            f"Before after model push: \n{'none--on CPU' if self.fastest_device.type == 'cpu' else torch.cuda.memory_summary()}"
        )

        # No cross validation:
        self.folds = 0
        self.opt_name = self.config.Training.get('optimizer',
                                                 'Adam')  # Default
        self.optimizer = self.get_optimizer(self.opt_name, self.model, self.lr)

        self.loss_fn = nn.CrossEntropyLoss()
        self.scheduler = optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, self.min_epochs)

        sample_width = self.config.getint('Training', 'sample_width', 400)
        sample_height = self.config.getint('Training', 'sample_height', 400)
        self.train_loader, self.val_loader = self.get_dataloader(
            sample_width, sample_height)
        self.class_names = self.train_loader.dataset.classes

        log_dir = os.path.join(self.curr_dir, 'runs')
        raw_data_dir = os.path.join(self.curr_dir, 'runs_raw_results')

        self.setup_tensorboard(log_dir, raw_data_dir=raw_data_dir)

        # Log a few example spectrograms to tensorboard;
        # one per class:
        TensorBoardPlotter.write_img_grid(
            self.writer,
            self.root_train_test_data,
            len(self.class_names),  # Num of train examples
        )

        # All ResultTally instances are
        # collected here (two per epoch, for
        # for all training loop runs, and one
        # for all val loop runs:

        self.step_results = ResultCollection()

        self.log.debug(
            f"Just before train: \n{'none--on CPU' if self.fastest_device.type == 'cpu' else torch.cuda.memory_summary()}"
        )
        try:
            final_epoch = self.train()
            self.visualize_final_epoch_results(final_epoch)
        finally:
            self.close_tensorboard()
Пример #7
0
    def prep_model_inference(self, model_path):
        '''
        1. Parses model_path into its components, and 
            creates a dict: self.model_props, which 
            contains the network type, grayscale or not,
            whether pretrained, etc.
        2. Creates self.csv_writer to write results measures
            into csv files. The destination file is determined
            as follows:
                <script_dir>/runs_raw_inferences/inf_csv_results_<datetime>/<model-props-derived-fname>.csv
        3. Creates self.writer(), a tensorboard writer with destination dir:
                <script_dir>/runs_inferences/inf_results_<datetime>
        4. Creates an ImageFolder classed dataset to self.samples_path
        5. Creates a shuffling DataLoader
        6. Initializes self.num_classes and self.class_names
        7. Creates self.model from the passed-in model_path name
        
        :param model_path: path to model that will be used for
            inference by this instance of Inferencer
        :type model_path: str
        '''

        model_fname = os.path.basename(model_path)

        # Extract model properties
        # from the model filename:
        self.model_props = FileUtils.parse_filename(model_fname)

        csv_results_root = os.path.join(self.curr_dir, 'runs_raw_inferences')
        #self.csv_dir = os.path.join(csv_results_root, f"inf_csv_results_{uuid.uuid4().hex}")
        ts = FileUtils.file_timestamp()
        self.csv_dir = os.path.join(csv_results_root, f"inf_csv_results_{ts}")
        os.makedirs(self.csv_dir, exist_ok=True)

        csv_file_nm = FileUtils.construct_filename(self.model_props,
                                                   prefix='inf',
                                                   suffix='.csv',
                                                   incl_date=True)
        csv_path = os.path.join(self.csv_dir, csv_file_nm)

        self.csv_writer = CSVWriterCloseable(csv_path)

        ts = FileUtils.file_timestamp()
        tensorboard_root = os.path.join(self.curr_dir, 'runs_inferences')
        tensorboard_dest = os.path.join(tensorboard_root, f"inf_results_{ts}")
        #f"inf_results_{ts}{uuid.uuid4().hex}")
        os.makedirs(tensorboard_dest, exist_ok=True)

        self.writer = SummaryWriterPlus(log_dir=tensorboard_dest)

        dataset = SingleRootImageDataset(
            self.samples_path, to_grayscale=self.model_props['to_grayscale'])

        # Make reproducible:
        Utils.set_seed(42)
        #********Utils.set_seed(56)
        self.loader = DataLoader(dataset,
                                 batch_size=self.batch_size,
                                 shuffle=True,
                                 drop_last=True)
        self.class_names = dataset.class_names()
        self.num_classes = len(self.class_names)

        # Get the right type of model,
        # Don't bother getting it pretrained,
        # of freezing it, b/c we will overwrite
        # the weights:

        self.model = NetUtils.get_net(
            self.model_props['net_name'],
            num_classes=self.num_classes,
            pretrained=False,
            freeze=0,
            to_grayscale=self.model_props['to_grayscale'])

        self.log.info(f"Tensorboard info written to {tensorboard_dest}")
        self.log.info(f"Result measurement CSV file(s) written to {csv_path}")