Пример #1
0
    def pairwiseRmsd( self, aMask=None, noFit=0 ):
        """
        Calculate rmsd between each 2 coordinate frames.

        :param aMask: atom mask
        :type  aMask: [1|0]
        :return: frames x frames array of float
        :rtype: array
        """
        frames = self.frames

        if aMask is not None:
            frames = N0.compress( aMask, frames, 1 )

        result = N0.zeros( (len( frames ), len( frames )), N0.Float32 )

        for i in range(0, len( frames ) ):

            for j in range( i+1, len( frames ) ):
                if noFit:
                    d = N0.sqrt(N0.sum(N0.power(frames[i]-frames[j], 2), 1))
                    result[i,j] = result[j,i] = N0.sqrt( N0.average(d**2) )

                else:
                    rt, rmsdLst = rmsFit.match( frames[i], frames[j], 1 )
                    result[i,j] = result[j,i] = rmsdLst[0][1]

        return result
Пример #2
0
def centerSurfDist(model, surf_mask, mask=None):
    """
    Calculate the longest and shortest distance from
    the center of the molecule to the surface.

    @param mask: atoms not to be considerd (default: None)
    @type  mask: [1|0]
    @param surf_mask: atom surface mask, needed for minimum surface distance
    @type  surf_mask: [1|0]

    @return: max distance, min distance
    @rtype: float, float
    """
    if mask is None:
        mask = model.maskHeavy()

    ## calculate center of mass
    center = model.centerOfMass()

    ## surface atom coordinates
    surf_xyz = N0.compress(mask * surf_mask, model.getXyz(), 0)

    ## find the atom closest and furthest away from center
    dist = N0.sqrt(N0.sum((surf_xyz - center)**2, 1))
    minDist = min(dist)
    maxDist = max(dist)

    return maxDist, minDist
Пример #3
0
def projectOnSphere(xyz, radius=None, center=None):
    """
    Project the coordinates xyz on a sphere with a given radius around
    a given center.

    :param xyz: cartesian coordinates
    :type  xyz: array N x 3 of float
    :param radius: radius of target sphere, if not provided the maximal
                   distance to center will be used (default: None)
    :type  radius: float
    :param center: center of the sphere, if not given the average of xyz
                   will be assigned to the center (default: None)
    :type  center: array 0 x 3 of float

    :return: array of cartesian coordinates (x, y, z)
    :rtype: array    
    """
    if center is None:
        center = N0.average(xyz)

    if radius is None:
        radius = max(N0.sqrt(N0.sum(N0.power(xyz - center, 2), 1)))

    rtp = cartesianToPolar(xyz - center)
    rtp[:, 0] = radius

    return polarToCartesian(rtp) + center
Пример #4
0
    def __pairwiseDistances(self, u, v):
        """
        pairwise distance between 2 3-D numpy arrays of atom coordinates.

        @param u: coordinates
        @type  u: array
        @param v: coordinates
        @type  v: array
        
        @return: Numpy array len(u) x len(v)
        @rtype:array
        
        @author: Wolfgang Rieping.
        """
        ## check input
        if not type( u ) == arraytype or\
           not type( v ) == arraytype:
            raise ComplexError('unsupported argument type ' + \
                               str( type(u) ) + ' or ' + str( type(v) ) )

        diag1= N0.diagonal(N0.dot(u,N0.transpose(u)))
        diag2= N0.diagonal(N0.dot(v,N0.transpose(v)))
        dist= -N0.dot(v,N0.transpose(u))-N0.transpose(N0.dot(u,N0.transpose(v)))
        dist= N0.transpose(N0.asarray(list(map(lambda column,a:column+a, \
                                   N0.transpose(dist), diag1))))

        return N0.transpose(N0.sqrt(N0.asarray(
            list(map(lambda row,a: row+a, dist, diag2)))))
Пример #5
0
def projectOnSphere( xyz, radius=None, center=None ):
    """
    Project the coordinates xyz on a sphere with a given radius around
    a given center.

    :param xyz: cartesian coordinates
    :type  xyz: array N x 3 of float
    :param radius: radius of target sphere, if not provided the maximal
                   distance to center will be used (default: None)
    :type  radius: float
    :param center: center of the sphere, if not given the average of xyz
                   will be assigned to the center (default: None)
    :type  center: array 0 x 3 of float

    :return: array of cartesian coordinates (x, y, z)
    :rtype: array    
    """
    if center is None:
        center = N0.average( xyz )

    if radius is None:
        radius = max( N0.sqrt( N0.sum( N0.power( xyz - center, 2 ), 1 ) ) )

    rtp = cartesianToPolar( xyz - center )
    rtp[ :, 0 ] = radius

    return polarToCartesian( rtp ) + center
Пример #6
0
    def __pairwiseDistances(self, u, v):
        """
        pairwise distance between 2 3-D numpy arrays of atom coordinates.

        @param u: coordinates
        @type  u: array
        @param v: coordinates
        @type  v: array
        
        @return: Numpy array len(u) x len(v)
        @rtype:array
        
        @author: Wolfgang Rieping.
        """
        ## check input
        if not type( u ) == arraytype or\
           not type( v ) == arraytype:
            raise ComplexError('unsupported argument type ' + \
                               str( type(u) ) + ' or ' + str( type(v) ) )

        diag1 = N0.diagonal(N0.dot(u, N0.transpose(u)))
        diag2 = N0.diagonal(N0.dot(v, N0.transpose(v)))
        dist = -N0.dot(v, N0.transpose(u)) - N0.transpose(
            N0.dot(u, N0.transpose(v)))
        dist= N0.transpose(N0.asarray(list(map(lambda column,a:column+a, \
                                   N0.transpose(dist), diag1))))

        return N0.transpose(
            N0.sqrt(N0.asarray(list(map(lambda row, a: row + a, dist,
                                        diag2)))))
Пример #7
0
def SD(x, avg = None):
    """
    Standard deviation, S{sigma}

    :param x: data
    :type  x: array('f') or float
    :param avg: use this average, otherwise calculated from x
    :type  avg: float OR None

    :return: float
    :rtype: float        
    """
    return N0.sqrt(variance(x, avg))
Пример #8
0
    def dihedral( self, coor1, coor2, coor3, coor4 ):
        """
        Calculates the torsion angle of a set of four atom coordinates.
        The dihedral angle returned is the angle between the projection
        of i1-i2 and the projection of i4-i3 onto a plane normal to i2-i3.

        @param coor1: coordinates
        @type  coor1: [float]
        @param coor2: coordinates
        @type  coor2: [float]
        @param coor3: coordinates
        @type  coor3: [float]
        @param coor4: coordinates
        @type  coor4: [float]        
        """
        vec21 = coor2 - coor1
        vec32 = coor3 - coor2
        L = N0.cross( vec21, vec32 )
        L_norm = N0.sqrt(sum(L**2))

        vec43 = coor4 - coor3
        vec23 = coor2 - coor3
        R = N0.cross( vec43, vec23 )
        R_norm = N0.sqrt(sum(R**2))

        S     = N0.cross( L, R )
        angle = sum( L*R ) / ( L_norm * R_norm )

        ## sometimes the value turns out to be ever so little greater than 
        ## one, to prevent N0.arccos errors for this, set angle = 1.0
        if angle >  1.0: angle = 1.0
            
        if angle < -1.0: angle = -1.0

        angle = N0.arccos(angle) *180/N0.pi
        if sum(S*vec32) < 0.0:
            angle = -angle

        return angle
Пример #9
0
def wSD(x, w):
    """
    Standard deviation of weighted data.

    :param x: X-D array with numbers
    :type  x: array
    :param w: 1-D array of same length as x with weight factors
    :type  w: array

    :return: array('f') or float
    :rtype: array('f') or float     
    """
    return N0.sqrt(wVar(x, w))
Пример #10
0
def wSD(x, w):
    """
    Standard deviation of weighted data.

    :param x: X-D array with numbers
    :type  x: array
    :param w: 1-D array of same length as x with weight factors
    :type  w: array

    :return: array('f') or float
    :rtype: array('f') or float     
    """
    return N0.sqrt( wVar(x, w) )
Пример #11
0
    def dihedral(self, coor1, coor2, coor3, coor4):
        """
        Calculates the torsion angle of a set of four atom coordinates.
        The dihedral angle returned is the angle between the projection
        of i1-i2 and the projection of i4-i3 onto a plane normal to i2-i3.

        @param coor1: coordinates
        @type  coor1: [float]
        @param coor2: coordinates
        @type  coor2: [float]
        @param coor3: coordinates
        @type  coor3: [float]
        @param coor4: coordinates
        @type  coor4: [float]        
        """
        vec21 = coor2 - coor1
        vec32 = coor3 - coor2
        L = N0.cross(vec21, vec32)
        L_norm = N0.sqrt(sum(L**2))

        vec43 = coor4 - coor3
        vec23 = coor2 - coor3
        R = N0.cross(vec43, vec23)
        R_norm = N0.sqrt(sum(R**2))

        S = N0.cross(L, R)
        angle = sum(L * R) / (L_norm * R_norm)

        ## sometimes the value turns out to be ever so little greater than
        ## one, to prevent N0.arccos errors for this, set angle = 1.0
        if angle > 1.0: angle = 1.0

        if angle < -1.0: angle = -1.0

        angle = N0.arccos(angle) * 180 / N0.pi
        if sum(S * vec32) < 0.0:
            angle = -angle

        return angle
Пример #12
0
def SD(x, avg=None):
    """
    Standard deviation, S{sigma}

    :param x: data
    :type  x: array('f') or float
    :param avg: use this average, otherwise calculated from x
    :type  avg: float OR None

    :return: float
    :rtype: float        
    """
    return N0.sqrt(variance(x, avg))
Пример #13
0
    def __random_translation( self ):
        """
        Random translation on a sphere around 0,0,0 with fixed radius
        The radius is the sum of the (max) radius of receptor and ligand

        @return: translation array 3 x 1 of float
        @rtype: array
        """
        radius = (self.d_max_rec + self.d_max_lig) / 2.0
        xyz = R.random_sample( 3 ) - 0.5

        scale = radius*1.0 / N0.sqrt( N0.sum( xyz**2 ) )

        return scale * xyz
Пример #14
0
    def __max_distance( self, model ):
        """
        largest center to any other atom distance

        @param model: model with centered coordinates
        @type  model: PDBModel

        @return: largest distance
        @rtype: float
        """
        center = model.centerOfMass()
        dist = N0.sqrt( N0.sum( ( model.getXyz()-center )**2 , 1 ) )

        return max( dist )
Пример #15
0
def pairwiseDistances(u, v):
    """
    Pairwise distances between two arrays.

    :param u: first array 
    :type  u: array
    :param v: second array 
    :type  v: array

    :return: array( len(u) x len(v) ) of double
    :rtype: array
    """
    diag1 = N0.diagonal( N0.dot( u, N0.transpose(u) ) )
    diag2 = N0.diagonal( N0.dot( v, N0.transpose(v) ) )
    dist = -N0.dot( v,N0.transpose(u) )\
         -N0.transpose( N0.dot( u, N0.transpose(v) ) )
    dist = N0.transpose( N0.asarray( list(map( lambda column,a:column+a, \
                                        N0.transpose(dist), diag1)) ) )
    return N0.transpose( N0.sqrt( N0.asarray(
        list(map( lambda row,a: row+a, dist, diag2 ) ) )))
Пример #16
0
    def getFluct_global( self, mask=None ):
        """
        Get RMS of each atom from it's average position in trajectory.
        The frames should be superimposed (fit() ) to a reference.

        :param mask: N x 1 list/Numpy array of 0|1, (N=atoms),
                     atoms to be considered.
        :type  mask: [1|0]

        :return: Numpy array ( N_unmasked x 1 ) of float.
        :rtype: array
        """
        frames = self.frames
        if mask is not None:
            frames = N0.compress( mask, frames, 1 )

        ## mean position of each atom in all frames
        avg = N0.average( frames )

        return N0.average(N0.sqrt(N0.sum(N0.power(frames - avg, 2), 2) ))
Пример #17
0
def pairwiseDistances(u, v):
    """
    Pairwise distances between two arrays.

    :param u: first array 
    :type  u: array
    :param v: second array 
    :type  v: array

    :return: array( len(u) x len(v) ) of double
    :rtype: array
    """
    diag1 = N0.diagonal(N0.dot(u, N0.transpose(u)))
    diag2 = N0.diagonal(N0.dot(v, N0.transpose(v)))
    dist = -N0.dot( v,N0.transpose(u) )\
         -N0.transpose( N0.dot( u, N0.transpose(v) ) )
    dist = N0.transpose( N0.asarray( list(map( lambda column,a:column+a, \
                                        N0.transpose(dist), diag1)) ) )
    return N0.transpose(
        N0.sqrt(N0.asarray(list(map(lambda row, a: row + a, dist, diag2)))))
Пример #18
0
def rowDistances( x, y ):
    """
    Calculate the distances between the items of two arrays (of same shape)
    after least-squares superpositioning.

    :param x: first set of coordinates
    :type  x: array('f')
    :param y: second set of coordinates
    :type  y: array('f')  

    :return: array( len(x), 'f' ), distance between x[i] and y[i] for all i
    :rtype: array
    """
    ## find transformation for best match
    r, t = findTransformation(x, y)

    ## transform coordinates
    z = N0.dot(y, N0.transpose(r)) + t

    ## calculate row distances
    return N0.sqrt(N0.sum(N0.power(x - z, 2), 1)) 
Пример #19
0
def cartesianToPolar(xyz):
    """
    Convert cartesian coordinate array to polar coordinate array: 
    C{ x,y,z -> r, S{theta}, S{phi} }

    :param xyz: array of cartesian coordinates (x, y, z)
    :type  xyz: array

    :return: array of polar coordinates (r, theta, phi)
    :rtype: array
    """
    r = N0.sqrt(N0.sum(xyz**2, 1))
    p = N0.arccos(xyz[:, 2] / r)

    ## have to take care of that we end up in the correct quadrant
    t = []
    for i in range(len(xyz)):
        ## for theta (arctan)
        t += [math.atan2(xyz[i, 1], xyz[i, 0])]

    return N0.transpose(N0.concatenate(([r], [t], [p])))
Пример #20
0
def rowDistances(x, y):
    """
    Calculate the distances between the items of two arrays (of same shape)
    after least-squares superpositioning.

    :param x: first set of coordinates
    :type  x: array('f')
    :param y: second set of coordinates
    :type  y: array('f')  

    :return: array( len(x), 'f' ), distance between x[i] and y[i] for all i
    :rtype: array
    """
    ## find transformation for best match
    r, t = findTransformation(x, y)

    ## transform coordinates
    z = N0.dot(y, N0.transpose(r)) + t

    ## calculate row distances
    return N0.sqrt(N0.sum(N0.power(x - z, 2), 1))
Пример #21
0
def cartesianToPolar( xyz ):
    """
    Convert cartesian coordinate array to polar coordinate array: 
    C{ x,y,z -> r, S{theta}, S{phi} }

    :param xyz: array of cartesian coordinates (x, y, z)
    :type  xyz: array

    :return: array of polar coordinates (r, theta, phi)
    :rtype: array
    """
    r = N0.sqrt( N0.sum( xyz**2, 1 ) )
    p = N0.arccos( xyz[:,2] / r )

    ## have to take care of that we end up in the correct quadrant
    t=[]
    for i in range(len(xyz)):
        ## for theta (arctan)
        t += [math.atan2( xyz[i,1], xyz[i,0] )]

    return N0.transpose( N0.concatenate( ([r],[t],[p]) ) )
Пример #22
0
def distance_matrix(x, y):
    return N0.sqrt(squared_distance_matrix(x, y))
Пример #23
0
def match(x, y, n_iterations=1, z=2, eps_rmsd=0.5, eps_stdv=0.05):
    """
    Matches two arrays onto each other, while iteratively removing outliers.
    Superimposed array y would be C{ N0.dot(y, N0.transpose(r)) + t }.

    :param n_iterations: number of calculations::
                           1 .. no iteration 
                           0 .. until convergence
    :type  n_iterations: 1|0
    :param z: number of standard deviations for outlier definition (default: 2)
    :type  z: float
    :param eps_rmsd: tolerance in rmsd (default: 0.5)
    :type  eps_rmsd: float
    :param eps_stdv: tolerance in standard deviations (default: 0.05)
    :type  eps_stdv: float

    :return: (r,t), [ [percent_considered, rmsd_for_it, outliers] ]
    :rtype: (array, array), [float, float, int]
    """
    iter_trace = []

    rmsd_old = 0
    stdv_old = 0

    n = 0
    converged = 0

    mask = N0.ones(len(y), N0.Int32 )

    while not converged:

        ## find transformation for best match
        r, t = findTransformation(N0.compress(mask, x, 0),
                                  N0.compress(mask, y, 0))

        ## transform coordinates
        xt = N0.dot(y, N0.transpose(r)) + t

        ## calculate row distances
        d = N0.sqrt(N0.sum(N0.power(x - xt, 2), 1)) * mask

        ## calculate rmsd and stdv
        rmsd = N0.sqrt(N0.average(N0.compress(mask, d)**2))
        stdv = MU.SD(N0.compress(mask, d))

        ## check conditions for convergence
        d_rmsd = abs(rmsd - rmsd_old)
        d_stdv = abs(1 - stdv_old / stdv)

        if d_rmsd < eps_rmsd and d_stdv < eps_stdv:
            converged = 1
        else:
            rmsd_old = rmsd
            stdv_old = stdv

        ## store result
        perc = round(float(N0.sum(mask)) / float(len(mask)), 2)

        ## throw out non-matching rows
        mask = N0.logical_and(mask, N0.less(d, rmsd + z * stdv))
        outliers = N0.nonzero( N0.logical_not( mask ) )
        iter_trace.append([perc, round(rmsd, 3), outliers])

        n += 1

        if n_iterations and n >= n_iterations:
            break

    return (r, t), iter_trace
Пример #24
0
def distance_matrix(x, y):
    return N0.sqrt(squared_distance_matrix(x, y))
Пример #25
0
def match(x, y, n_iterations=1, z=2, eps_rmsd=0.5, eps_stdv=0.05):
    """
    Matches two arrays onto each other, while iteratively removing outliers.
    Superimposed array y would be C{ N0.dot(y, N0.transpose(r)) + t }.

    :param n_iterations: number of calculations::
                           1 .. no iteration 
                           0 .. until convergence
    :type  n_iterations: 1|0
    :param z: number of standard deviations for outlier definition (default: 2)
    :type  z: float
    :param eps_rmsd: tolerance in rmsd (default: 0.5)
    :type  eps_rmsd: float
    :param eps_stdv: tolerance in standard deviations (default: 0.05)
    :type  eps_stdv: float

    :return: (r,t), [ [percent_considered, rmsd_for_it, outliers] ]
    :rtype: (array, array), [float, float, int]
    """
    iter_trace = []

    rmsd_old = 0
    stdv_old = 0

    n = 0
    converged = 0

    mask = N0.ones(len(y), N0.Int32)

    while not converged:

        ## find transformation for best match
        r, t = findTransformation(N0.compress(mask, x, 0),
                                  N0.compress(mask, y, 0))

        ## transform coordinates
        xt = N0.dot(y, N0.transpose(r)) + t

        ## calculate row distances
        d = N0.sqrt(N0.sum(N0.power(x - xt, 2), 1)) * mask

        ## calculate rmsd and stdv
        rmsd = N0.sqrt(N0.average(N0.compress(mask, d)**2))
        stdv = MU.SD(N0.compress(mask, d))

        ## check conditions for convergence
        d_rmsd = abs(rmsd - rmsd_old)
        d_stdv = abs(1 - stdv_old / stdv)

        if d_rmsd < eps_rmsd and d_stdv < eps_stdv:
            converged = 1
        else:
            rmsd_old = rmsd
            stdv_old = stdv

        ## store result
        perc = round(float(N0.sum(mask)) / float(len(mask)), 2)

        ## throw out non-matching rows
        mask = N0.logical_and(mask, N0.less(d, rmsd + z * stdv))
        outliers = N0.nonzero(N0.logical_not(mask))
        iter_trace.append([perc, round(rmsd, 3), outliers])

        n += 1

        if n_iterations and n >= n_iterations:
            break

    return (r, t), iter_trace
Пример #26
0
    def getFluct_local( self, mask=None, border_res=1,
                        left_atoms=['C'], right_atoms=['N'], verbose=1 ):
        """
        Get mean displacement of each atom from it's average position after
        fitting of each residue to the reference backbone coordinates of itself
        and selected atoms of neighboring residues to the right and left.

        :param mask: N_atoms x 1 array of 0||1, atoms for which fluctuation
                     should be calculated
        :type  mask: array
        :param border_res: number of neighboring residues to use for fitting
        :type  border_res: int
        :param left_atoms: atoms (names) to use from these neighbore residues
        :type  left_atoms: [str]
        :param right_atoms: atoms (names) to use from these neighbore residues
        :type  right_atoms: [str]

        :return: Numpy array ( N_unmasked x 1 ) of float
        :rtype: array
        """
        if mask is None:
            mask = N0.ones( len( self.frames[0] ), N0.Int32 )

        if verbose: T.errWrite( "rmsd fitting per residue..." )

        residues = N0.nonzero( self.ref.atom2resMask( mask ) )

        ## backbone atoms used for fit
        fit_atoms_right = N0.nonzero( self.ref.mask( right_atoms ) )
        fit_atoms_left  = N0.nonzero( self.ref.mask( left_atoms ) )
        ## chain index of each residue
        rchainMap = N0.take( self.ref.chainMap(), self.ref.resIndex() )

        result = []

        for res in residues:

            i_res, i_border = self.__resWindow(res, border_res, rchainMap,
                                               fit_atoms_left, fit_atoms_right)

            try:
                if not len( i_res ): raise PDBError('empty residue')

                t_res = self.takeAtoms( i_res + i_border )

                i_center = range( len( i_res ) )

                mask_BB = t_res.ref.maskBB() * t_res.ref.maskHeavy()

                ## fit with border atoms ..
                t_res.fit( ref=t_res.ref, mask=mask_BB, verbose=0 )
                ## .. but calculate only with center residue atoms
                frames = N0.take( t_res.frames, i_center, 1 )

                avg = N0.average( frames )

                rmsd = N0.average(N0.sqrt(N0.sum(N0.power(frames - avg, 2), 2) ))

                result.extend( rmsd )

                if verbose: T.errWrite('#')

            except ZeroDivisionError:
                result.extend( N0.zeros( len(i_res), N0.Float32 ) )
                T.errWrite('?' + str( res ))

        if verbose: T.errWriteln( "done" )

        return result
Пример #27
0
    def fit( self, mask=None, ref=None, n_it=1,
             prof='rms', verbose=1, fit=1, **profInfos ):
        """
        Superimpose all coordinate frames on reference coordinates. Put rms
        values in a profile. If n_it > 1, the fraction of atoms considered
        for the fit is put into a profile called |prof|_considered
        (i.e. by default 'rms_considered').

        :param mask: atom mask, atoms to consider default: [all]
        :type  mask: [1|0]
        :param ref: use as reference, default: None, average Structure
        :type  ref: PDBModel
        :param n_it: number of fit iterations, kicking out outliers on the way
                     1 -> classic single fit, 0 -> until convergence
                     (default: 1)
        :type  n_it: int
        :param prof: save rms per frame in profile of this name, ['rms']
        :type  prof: str
        :param verbose: print progress info to STDERR (default: 1)
        :type  verbose: 1|0
        :param fit: transform frames after match, otherwise just calc rms
                    (default: 1)          
        :type  fit: 1|0
        :param profInfos: additional key=value pairs for rms profile info []
        :type profInfos: key=value
        """
        if ref is None:
            refxyz = N0.average( self.frames, 0 )
        else:
            refxyz = ref.getXyz()

        if mask is None:
            mask = N0.ones( len( refxyz ), N0.Int32 )

        refxyz = N0.compress( mask, refxyz, 0 )

        if verbose: T.errWrite( "rmsd fitting..." )

        rms = []          ## rms value of each frame
        non_outliers = [] ## fraction of atoms considered for rms and fit
        iterations = []   ## number of iterations performed on each frame

        for i in range(0, len( self.frames) ):

            xyz = self.frames[i]

            if n_it != 1:
                (r, t), rmsdList = rmsFit.match( refxyz,
                                                 N0.compress( mask, xyz, 0), n_it)
                iterations.append( len( rmsdList ) )
                non_outliers.append( rmsdList[-1][0] )

                xyz_transformed = N0.dot( xyz, N0.transpose(r)) + t

                rms += [ rmsdList[-1][1] ]

            else:
                r, t = rmsFit.findTransformation( refxyz,
                                                  N0.compress( mask, xyz, 0))

                xyz_transformed = N0.dot( xyz, N0.transpose(r)) + t

                d = N0.sqrt(N0.sum(N0.power( N0.compress(mask, xyz_transformed,0)\
                                             - refxyz, 2), 1))


                rms += [ N0.sqrt( N0.average(d**2) ) ]


            if fit:
                self.frames[i] = xyz_transformed.astype(N0.Float32)

            if verbose and i%100 == 0:
                T.errWrite( '#' )

        self.setProfile( prof, rms, n_iterations=n_it, **profInfos )

        if non_outliers:
            self.setProfile( prof+'_considered', non_outliers,
                             n_iterations=n_it,
                             comment='fraction of atoms considered for iterative fit' )

        if verbose: T.errWrite( 'done\n' )