def test_clone(self): outpoint = COutPoint( lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b' ), 0) txin = CMutableTxIn(prevout=outpoint, scriptSig=CScript(b'\x03abc'), nSequence=0xffffffff) self.assertEqual(txin.serialize(), txin.clone().serialize())
def test_GetHash(self): """CMutableTxIn.GetHash() is not cached""" txin = CMutableTxIn() h1 = txin.GetHash() txin.prevout.n = 1 self.assertNotEqual(h1, txin.GetHash())
def test_is_coinbase(self) -> None: tx = CMutableTransaction() self.assertFalse(tx.is_coinbase()) tx.vin.append(CMutableTxIn()) # IsCoinBase() in reference client doesn't check if vout is empty self.assertTrue(tx.is_coinbase()) tx.vin[0].prevout.n = 0 self.assertFalse(tx.is_coinbase()) tx.vin[0] = CMutableTxIn() tx.vin.append(CMutableTxIn()) self.assertFalse(tx.is_coinbase())
def test_immutable_tx_creation_with_mutable_parts_specified(self): tx = CTransaction( vin=[CMutableTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))], vout=[CMutableTxOut(nValue=1)], witness=CMutableTxWitness( [CMutableTxInWitness(CScriptWitness([CScript([0])]))])) def check_immutable_parts(tx): self.assertTrue(tx.vin[0].is_immutable()) self.assertTrue(tx.vin[0].is_immutable()) self.assertTrue(tx.vout[0].is_immutable()) self.assertTrue(tx.wit.is_immutable()) self.assertTrue(tx.wit.vtxinwit[0].is_immutable()) check_immutable_parts(tx) # Test that if we deserialize with CTransaction, # all the parts are immutable tx = CTransaction.deserialize(tx.serialize()) check_immutable_parts(tx) # Test some parts separately, because when created via # CMutableTransaction instantiation, they are created with from_* # methods, and not directly txin = CTxIn(prevout=CMutableOutPoint(hash=b'a' * 32, n=0)) self.assertTrue(txin.prevout.is_immutable()) wit = CTxWitness((CMutableTxInWitness(), )) self.assertTrue(wit.vtxinwit[0].is_immutable())
def test_mutable_tx_creation_with_immutable_parts_specified(self) -> None: tx = CElementsMutableTransaction( vin=[CTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))], vout=[CTxOut()], witness=CTxWitness(vtxinwit=[CTxInWitness()], vtxoutwit=[CTxOutWitness()])) self.assertIsInstance(tx, CElementsMutableTransaction) def check_mutable_parts(tx: CElementsMutableTransaction) -> None: self.assertTrue(tx.vin[0].is_mutable()) self.assertTrue(tx.vin[0].prevout.is_mutable()) self.assertTrue(tx.vout[0].is_mutable()) self.assertTrue(tx.wit.is_mutable()) self.assertTrue(tx.wit.vtxinwit[0].is_mutable()) self.assertTrue(tx.wit.vtxoutwit[0].is_mutable()) check_mutable_parts(tx) # Test that if we deserialize with CMutableTransaction, # all the parts are mutable tx = CElementsMutableTransaction.deserialize(tx.serialize()) check_mutable_parts(tx) # Test some parts separately, because when created via # CMutableTransaction instantiation, they are created with from_* # methods, and not directly txin = CMutableTxIn(prevout=COutPoint(hash=b'a' * 32, n=0)) self.assertTrue(txin.prevout.is_mutable()) wit = CElementsMutableTxWitness((CElementsTxInWitness(), ), (CElementsTxOutWitness(), )) self.assertTrue(wit.vtxinwit[0].is_mutable()) self.assertTrue(wit.vtxoutwit[0].is_mutable())
def mktx(ins, outs, version=1, locktime=0): """ Given a list of input tuples (txid(bytes), n(int)), and a list of outputs which are dicts with keys "address" (value should be *str* not CCoinAddress) ( or alternately "script" (for nonstandard outputs, value should be CScript)), "value" (value should be integer satoshis), outputs a CMutableTransaction object. Tx version and locktime are optionally set, for non-default locktimes, inputs are given nSequence as per below comment. """ vin = [] vout = [] # This does NOT trigger rbf and mimics Core's standard behaviour as of # Jan 2019. # Tx creators wishing to use rbf will need to set it explicitly outside # of this function. if locktime != 0: sequence = 0xffffffff - 1 else: sequence = 0xffffffff for i in ins: outpoint = CMutableOutPoint((i[0][::-1]), i[1]) inp = CMutableTxIn(prevout=outpoint, nSequence=sequence) vin.append(inp) for o in outs: if "script" in o: sPK = o["script"] else: # note the to_scriptPubKey method is only available for standard # address types sPK = CCoinAddress(o["address"]).to_scriptPubKey() out = CMutableTxOut(o["value"], sPK) vout.append(out) return CMutableTransaction(vin, vout, nLockTime=locktime, nVersion=version)
def generate_transaction(amount, txin_txid, txin_vout, txout_addr, redeem_list): txin = CMutableTxIn(COutPoint(txin_txid, txin_vout)) txout = CMutableTxOut(amount * COIN, txout_addr.addr.to_scriptPubKey()) witness_script = CScriptWitness(tuple(redeem_list)) witness = CTxWitness(tuple([CTxInWitness(witness_script)])) tx = CMutableTransaction(vin=[txin], vout=[txout], witness=witness) return tx
def test_repr(self): def T(txin, expected): actual = repr(txin) self.assertEqual(actual, expected) T( CMutableTxIn(), 'CBitcoinMutableTxIn(CBitcoinMutableOutPoint(), CBitcoinScript([]), 0xffffffff)' )
def test_repr(self): def T(txin, expected): actual = repr(txin) self.assertEqual(actual, expected) T( CMutableTxIn(), 'CElementsMutableTxIn(CElementsMutableOutPoint(), CElementsScript([]), 0xffffffff, CAssetIssuance(), is_pegin=False)' )
def raw_multisig(self): source = self.next_address() self.fund_address(source, 0.1) # construct transaction manually tx_ins = [CMutableTxIn(COutPoint(source.txid, source.vout))] keys = [self.next_address().key for _ in range(3)] redeem_script = CScript([OP_2, keys[0].pub, keys[1].pub, keys[2].pub, OP_3, OP_CHECKMULTISIG]) tx_outs = [ CMutableTxOut(Coin(0.1 - self.fee).satoshi(), redeem_script)] tx = CMutableTransaction(tx_ins, tx_outs) # sign and submit key = source.key script = source.address.to_scriptPubKey() sig = self._sign(script, tx, 0, Coin(source.value).satoshi(), key) tx_ins[0].scriptSig = CScript([sig, key.pub]) txid = self._send_transaction(tx, []) self.log_value("raw-multisig-tx", txid) # Redeem Transaction tx_ins = [CMutableTxIn(COutPoint(lx(txid), 0))] destination = self.next_address() tx_outs = [CMutableTxOut(Coin(0.1 - 2 * self.fee).satoshi(), destination.address.to_scriptPubKey())] tx = CMutableTransaction(tx_ins, tx_outs) # Sign with 2 out of three keys sig1 = self._sign(redeem_script, tx, 0, Coin(0.1 - self.fee).satoshi(), keys[0]) sig3 = self._sign(redeem_script, tx, 0, Coin(0.1 - self.fee).satoshi(), keys[2]) tx_ins[0].scriptSig = CScript([OP_0, sig1, sig3]) txid = self._send_transaction(tx, []) self.log_value("raw-multisig-redeem-tx", txid) self.generate_block()
def op_return(self): source = self.next_address("p2pkh") self.fund_address(source, 2 * self.fee) tx_ins = [CMutableTxIn(COutPoint(source.txid, source.vout))] tx_outs = [CMutableTxOut(Coin(self.fee).satoshi(), CScript([OP_RETURN, x("4c6f726420566f6c64656d6f7274")]))] tx = CMutableTransaction(tx_ins, tx_outs) key = source.key script = source.address.to_scriptPubKey() sig = self._sign(script, tx, 0, Coin(source.value).satoshi(), key) tx_ins[0].scriptSig = CScript([sig, key.pub]) txid = self._send_transaction(tx, []) self.log_value("op-return-tx", txid)
def create_custom_block(self, reward): txid, _ = self.fund_address(self.next_address(), 10) tx2 = self.proxy.getrawtransaction(lx(txid)) coinbase = CMutableTransaction() coinbase.vin.append(CMutableTxIn(COutPoint(), CScript([self.proxy.getblockcount() + 1]))) coinbase.vout.append(CMutableTxOut(reward * COIN, self.next_address().address.to_scriptPubKey())) prev_block_hash = self.proxy.getblockhash(self.proxy.getblockcount()) ts = self._next_timestamp() self.proxy.call("setmocktime", ts) for nonce in range(1000): block = CBlock(nBits=0x207fffff, vtx=[coinbase, tx2], hashPrevBlock=prev_block_hash, nTime=ts, nNonce=nonce) result = self.proxy.submitblock(block) if not result: self.log.debug("Chosen nonce: {}".format(nonce)) break
def test_immutable(self) -> None: tx = CTransaction() self.assertFalse(tx.is_coinbase()) # check that immutable property holds with self.assertRaises(AttributeError): tx.nVersion = 2 # type: ignore with self.assertRaises(AttributeError): tx.vin.append(CTxIn()) # type: ignore mtx = tx.to_mutable() mtx.nVersion = 2 mtx.vin.append(CMutableTxIn()) itx = tx.to_immutable() with self.assertRaises(AttributeError): itx.nVersion = 2 # type: ignore with self.assertRaises(AttributeError): itx.vin.append(CTxIn()) # type: ignore
def alice(say, recv, send, die, rpc): """A function that implements the logic of the first participant of an asset atomic swap""" # Issue two asset that we are going to swap to Bob's 1 asset asset1_str, asset1_utxo = issue_asset(say, 1.0, rpc) asset2_str, asset2_utxo = issue_asset(say, 1.0, rpc) # We will need to pay a fee in an asset suitable for this fee_utxo = find_utxo_for_fee(say, die, rpc) say('Getting change address for fee asset') # We don't care for blinding key of change - the node will # have it, anyway, and we don't need to unblind the change. fee_change_addr, _ = get_dst_addr(say, rpc) say('Will use utxo {}:{} (amount: {}) for fee, change will go to {}'. format(fee_utxo['txid'], fee_utxo['vout'], fee_utxo['amount'], fee_change_addr)) say('Setting up communication with Bob') # Tell Bob that we are ready to communicate send('ready') # To avoid mempool synchronization problems, # in our example Alice is the one in charge of generating test blocks. # Bob gives alice txid of his transaction that he wants to be confirmed. bob_txid = recv('wait-txid-confirm') # Make sure asset issuance transactions are confirmed rpc.generatetoaddress(1, rpc.getnewaddress()) wait_confirm(say, asset1_utxo['txid'], die, rpc) wait_confirm(say, asset2_utxo['txid'], die, rpc) wait_confirm(say, bob_txid, die, rpc) # Make sure Bob is alive and ready to communicate, and send # him an offer for two assets say('Sending offer to Bob') my_offers = [ AtomicSwapOffer(asset=asset1_str, amount=coins_to_satoshi(asset1_utxo['amount'])), AtomicSwapOffer(asset=asset2_str, amount=coins_to_satoshi(asset2_utxo['amount'])) ] send('offer', my_offers) bob_offer = recv('offer') print_asset_balances(say, my_offers + [bob_offer], rpc) say('Bob responded with his offer: {}'.format(bob_offer)) # We unconditionally accept Bob's offer - his asset is # equally worthless as ours :-) # Generate an address for Bob to send his asset to. dst_addr, blinding_key = get_dst_addr(say, rpc) say('Sending my address and assetcommitments for my UTXOs to Bob') # Send Bob our address, and the assetcommitments of our UTXOs # (but not any other information about our UTXO), # so he can construct and blind a partial transaction that # will spend his own UTXO, to send his asset to our address. assetcommitments = [ asset1_utxo['assetcommitment'], asset2_utxo['assetcommitment'], fee_utxo['assetcommitment'] ] send('addr_and_assetcommitments', (str(dst_addr), assetcommitments)) partial_tx_bytes = recv('partial_blinded_tx') say('Got partial blinded tx of size {} bytes from Bob'.format( len(partial_tx_bytes))) partial_tx = CTransaction.deserialize(partial_tx_bytes) if len(partial_tx.vout) != 1: die('unexpected number of outputs in tx from Bob: expected 1, got {}'. format(len(partial_tx.vout))) result = partial_tx.vout[0].unblind_confidential_pair( blinding_key, partial_tx.wit.vtxoutwit[0].rangeproof) if result.error: die('cannot unblind output that should have been directed to us: {}'. format(result.error)) if result.asset.to_hex() != bob_offer.asset: die("asset in partial transaction from Bob {} is not the same " "as asset in Bob's initial offer ({})".format( result.asset.to_hex(), bob_offer.asset)) if result.amount != bob_offer.amount: die("amount in partial transaction from Bob {} is not the same " "as amount in Bob's initial offer ({})".format( result.amount, bob_offer.amount)) say("Asset and amount in partial transaction matches Bob's offer") bob_addr_list, bob_assetcommitment = recv('addr_list_and_assetcommitment') if len(bob_addr_list) != len(my_offers): die('unexpected address list lenth from Bob. expected {}, got {}'. format(len(my_offers), len(bob_addr_list))) say("Bob's addresses to receive my assets: {}".format(bob_addr_list)) # Convert Bob's addresses to address objects. # If Bob passes invalid address, we die with with exception. bob_addr_list = [CCoinAddress(a) for a in bob_addr_list] # Add our own inputs and outputs to Bob's partial tx # Create new mutable transaction from partial_tx tx = partial_tx.to_mutable() # We have assetcommitment for the first input, # other data is not needed for it. # initialize first elements of the arrays with empty/negative data. input_descriptors = [ BlindingInputDescriptor(asset=CAsset(), amount=-1, blinding_factor=Uint256(), asset_blinding_factor=Uint256()) ] # First output is already blinded, fill the slot with empty data output_pubkeys = [CPubKey()] # But assetcommitments array should start with Bob's asset commitment assetcommitments = [x(bob_assetcommitment)] # We will add our inputs for asset1 and asset2, and also an input # that will be used to pay the fee. # Note that the order is important: Bob blinded his transaction # with assetcommitments in the order we send them to him, # and we should add our inputs in the same order. utxos_to_add = (asset1_utxo, asset2_utxo, fee_utxo) # Add inputs for asset1 and asset2 and fee_asset and prepare input data # for blinding for utxo in utxos_to_add: # When we create CMutableTransaction and pass CTxIn, # it will be converted to CMutableTxIn. But if we append # to tx.vin or tx.vout, we need to use mutable versions # of the txin/txout classes, or else blinding or signing # will fail with error, unable to modify the instances. # COutPoint is not modified, though, so we can leave it # immutable. tx.vin.append( CMutableTxIn( prevout=COutPoint(hash=lx(utxo['txid']), n=utxo['vout']))) input_descriptors.append( BlindingInputDescriptor( asset=CAsset(lx(utxo['asset'])), amount=coins_to_satoshi(utxo['amount']), blinding_factor=Uint256(lx(utxo['amountblinder'])), asset_blinding_factor=Uint256(lx(utxo['assetblinder'])))) # If we are supplying asset blinders and assetblinders for # particular input, assetcommitment data for that input do # not need to be correct. But if we are supplying assetcommitments # at all (auxiliary_generators argument to tx.blind()), # then all the elements of that array must have correct # type (bytes) and length (33). This is a requirement of the original # Elements Core API, and python-elementstx requires this, too. assetcommitments.append(b'\x00' * 33) # Add outputs to give Bob all our assets, and fill output pubkeys # for blinding the outputs to Bob's addresses for n, offer in enumerate(my_offers): tx.vout.append( CMutableTxOut(nValue=CConfidentialValue(offer.amount), nAsset=CConfidentialAsset(CAsset(lx(offer.asset))), scriptPubKey=bob_addr_list[n].to_scriptPubKey())) output_pubkeys.append(bob_addr_list[n].blinding_pubkey) # Add change output for fee asset fee_change_amount = (coins_to_satoshi(fee_utxo['amount']) - FIXED_FEE_SATOSHI) tx.vout.append( CMutableTxOut(nValue=CConfidentialValue(fee_change_amount), nAsset=CConfidentialAsset(fee_asset), scriptPubKey=fee_change_addr.to_scriptPubKey())) output_pubkeys.append(fee_change_addr.blinding_pubkey) # Add fee output. # Note that while we use CConfidentialAsset and CConfidentialValue # to specify value and asset, they are not in fact confidential here # - they are explicit, because we pass explicit values at creation. # You can check if they are explicit or confidential # with nValue.is_explicit(). If they are explicit, you can access # the unblinded values with nValue.to_amount() and nAsset.to_asset() tx.vout.append( CMutableTxOut(nValue=CConfidentialValue(FIXED_FEE_SATOSHI), nAsset=CConfidentialAsset(fee_asset))) # Add dummy pubkey for non-blinded fee output output_pubkeys.append(CPubKey()) # Our transaction lacks txin witness instances for the added inputs, # and txout witness instances for added outputs. # If transaction already have witness data attached, transaction # serialization code will require in/out witness array length # to be equal to vin/vout array length # Therefore we need to add dummy txin and txout witnesses for each # input and output that we added to transaction # we added one input and one output per asset, and an additional # input/change-output for fee asset. for _ in utxos_to_add: tx.wit.vtxinwit.append(CMutableTxInWitness()) tx.wit.vtxoutwit.append(CMutableTxOutWitness()) # And one extra dummy txout witness for fee output tx.wit.vtxoutwit.append(CMutableTxOutWitness()) # And blind the combined transaction blind_result = tx.blind(input_descriptors=input_descriptors, output_pubkeys=output_pubkeys, auxiliary_generators=assetcommitments) # The blinding must succeed! if blind_result.error: die('blind failed: {}'.format(blind_result.error)) # And must blind exactly three outputs (two to Bob, one fee asset change) if blind_result.num_successfully_blinded != 3: die('blinded {} outputs, expected to be 3'.format( blind_result.num_successfully_blinded)) say('Successfully blinded the combined transaction, will now sign') # Sign two new asset inputs, and fee asset input for n, utxo in enumerate(utxos_to_add): # We specify input_index as 1+n because we skip first (Bob's) input sign_input(tx, 1 + n, utxo) say('Signed my inputs, sending partially-signed transaction to Bob') send('partially_signed_tx', tx.serialize()) # Note that at this point both participants can still opt out of the swap: # Alice by double-spending her inputs to the transaction, # and Bob by not signing or not broadcasting the transaction. # Bob still have tiny advantage, because # he can pretend to have 'difficulties' in broadcasting and try to exploit # Alice's patience. If Alice does not reclaim her funds in the case Bob's # behaviour deviates from expected, then Bob will have free option to # exectute the swap at the time convenient to him. # Get the swap transaction from Bob. # Bob is expected to broadcast this transaction, and could just send txid # here, but then there would be a period of uncertainty: if Alice do not # see the txid at her own node, she does not know if this is because Bob # did not actually broadcast, and is just taking his time watching asset # prices, or the transaction just takes long time to propagate. If the # protocol requires Bob to send the transaction, the timeout required for # Alice to wait can be defined much more certainly. try: signed_tx_raw = recv('final-signed-tx', timeout=ALICE_PATIENCE_LIMIT) signed_tx = CTransaction.deserialize(x(signed_tx_raw)) # Check that this transaction spends the same inputs as the transacton # previously agreed upon for n, vin in enumerate(signed_tx.vin): if vin.prevout != tx.vin[n].prevout: die('Inputs of transaction received from Bob do not match ' 'the agreed-upon transaction') # Send the transaction from our side txid = rpc.sendrawtransaction(b2x(signed_tx.serialize())) except Exception as e: # If there is any problem, including communication timeout or invalid # communication, or invalid transaction encoding, then Alice will try # to claim her funds back, so Bob won't have an option to execute the # swap at the time convenient to him. He should execute it immediately. say('Unexpected problem on receiving final signed transaction ' 'from Bob: {}'.format(e)) say('This is suspicious. I will try to reclaim my funds now') claim_funds_back(say, utxos_to_add, die, rpc) say("Claimed my funds back. Screw Bob!") sys.exit(0) # Make sure the final transaction is confirmed rpc.generatetoaddress(1, rpc.getnewaddress()) wait_confirm(say, txid, die, rpc) # Check that everything went smoothly balance = coins_to_satoshi(rpc.getbalance("*", 1, False, bob_offer.asset)) if balance != bob_offer.amount: die('something went wrong, balance of Bob\'s asset after swap ' 'should be {} satoshi, but it is {} satoshi'.format( balance, bob_offer.amount)) print_asset_balances(say, my_offers + [bob_offer], rpc) # Wait for alice to politely end the conversation send('thanks-goodbye') say('Asset atomic swap completed successfully')
# You'll need to send some funds to it to create a txout to spend. txin_p2sh_address = CBitcoinAddress.from_scriptPubKey(txin_scriptPubKey) print('Pay to:', str(txin_p2sh_address)) # Same as the txid:vout the createrawtransaction RPC call requires # # lx() takes *little-endian* hex and converts it to bytes; in Bitcoin # transaction hashes are shown little-endian rather than the usual big-endian. # There's also a corresponding x() convenience function that takes big-endian # hex and converts it to bytes. txid = lx('bff785da9f8169f49be92fa95e31f0890c385bfb1bd24d6b94d7900057c617ae') vout = 0 # Create the txin structure, which includes the outpoint. The scriptSig # defaults to being empty. txin = CMutableTxIn(COutPoint(txid, vout)) # Create the txout. This time we create the scriptPubKey from a Bitcoin # address. txout = CMutableTxOut(0.0005*COIN, CBitcoinAddress( '323uf9MgLaSn9T7vDaK1cGAZ2qpvYUuqSp' ).to_scriptPubKey()) # Create the unsigned transaction. tx = CMutableTransaction([txin], [txout]) # Calculate the signature hash for that transaction. Note how the script we use # is the redeemScript, not the scriptPubKey. That's because when the CHECKSIG # operation happens EvalScript() will be evaluating the redeemScript, so the # corresponding SignatureHash() function will use that same script when it
# Create the (in)famous correct brainwallet secret key. h = hashlib.sha256(b'correct horse battery staple').digest() seckey = CBitcoinKey.from_secret_bytes(h) # Same as the txid:vout the createrawtransaction RPC call requires # # lx() takes *little-endian* hex and converts it to bytes; in Bitcoin # transaction hashes are shown little-endian rather than the usual big-endian. # There's also a corresponding x() convenience function that takes big-endian # hex and converts it to bytes. txid = lx('7e195aa3de827814f172c362fcf838d92ba10e3f9fdd9c3ecaf79522b311b22d') vout = 0 # Create the txin structure, which includes the outpoint. The scriptSig # defaults to being empty. txin = CMutableTxIn(COutPoint(txid, vout)) # We also need the scriptPubKey of the output we're spending because # SignatureHash() replaces the transaction scriptSig's with it. # # Here we'll create that scriptPubKey from scratch using the pubkey that # corresponds to the secret key we generated above. txin_scriptPubKey = \ P2PKHBitcoinAddress.from_pubkey(seckey.pub).to_scriptPubKey() # Create the txout. This time we create the scriptPubKey from a Bitcoin # address. txout = CMutableTxOut( 0.001 * COIN, CBitcoinAddress('1C7zdTfnkzmr13HfA2vNm5SJYRK6nEKyq8').to_scriptPubKey())
def _create_transaction(self, sources: List[Address], recipients: List[Address], values, n_locktime, n_sequence): # save cospends self.cospends.union_all([str(x.address) for x in sources]) if not values: values = [recipient.value for recipient in recipients] tx_ins = [ CMutableTxIn(COutPoint(source.txid, source.vout), nSequence=n_sequence) for source in sources ] tx_outs = [] cnt = 0 for recipient, value in zip(recipients, values): if value == 0: self.log.warning("Creating output with 0 BTC") recipient.vout = cnt tx_outs.append( CMutableTxOut( Coin(value).satoshi(), recipient.address.to_scriptPubKey())) cnt += 1 tx = CMutableTransaction(tx_ins, tx_outs, nLockTime=n_locktime) in_idx = 0 witnesses = [] for txin, source in zip(tx_ins, sources): key = source.key if source.type == 'p2pkh': script = source.address.to_redeemScript() elif source.type == 'p2sh': script = CScript([key.pub, OP_CHECKSIG]) elif source.type == 'p2wpkh': script = source.address.to_redeemScript() elif source.type == 'p2wsh': script = source.witness_program else: raise UnsupportedAddressTypeError() # Create signature amount = Coin(source.value).satoshi() sig = self._sign(script, tx, in_idx, amount, key, source.type) # Add signature to input or witness if source.type == 'p2pkh': txin.scriptSig = CScript([sig, key.pub]) witnesses.append(CTxInWitness()) elif source.type == 'p2sh': txin.scriptSig = CScript([sig, script]) witnesses.append(CTxInWitness()) elif source.type == 'p2wpkh': txin.scriptSig = CScript() witnesses.append(CTxInWitness(CScriptWitness([sig, key.pub]))) elif source.type == 'p2wsh': txin.scriptSig = CScript() witnesses.append(CTxInWitness(CScriptWitness([sig, script]))) in_idx += 1 tx.wit = CTxWitness(witnesses) return tx