Пример #1
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        ###########################################
        # reorganize analog txt file for javascript
        # and find associated config file
        ###########################################

        # Reformat data file output by the analogs detection process so that
        # it can be read by the analogues viewer template.
        try:
            # Get the output csv file of analogs process (input by user in
            # text box)
            analogs = rename_complexinputs(request.inputs['analog_result'])[0]

            # analogs = request.inputs['analog_result'][0]
            LOGGER.info("analogs file path %s ", analogs)

            configfile = "dummy.txt"  # anlg.get_viewer_configfile(analogs)
            analogs_mod = anlg.reformat_analogs(analogs)
            response.outputs['output_txt'].file = analogs_mod  # output_data
            LOGGER.info("analogs for visualisation prepared")
        except Exception:
            msg = 'Failed to reformat analogs file'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            output_av = anlg.render_viewer(configfile=configfile,
                                           datafile=analogs_mod)
            LOGGER.info('Viewer html page generated')
            response.update_status(
                'Successfully generated analogs viewer html page', 90)
            response.outputs['output_html'].file = output_av
            LOGGER.info('output_av: %s ', output_av)
        except Exception:
            msg = 'Failed to generate viewer'
            LOGGER.exception(msg)
            raise Exception(msg)

        return response
Пример #2
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')

        response.update_status('execution started at : %s ' % dt.now(), 10)

        ################################
        # reading in the input arguments
        ################################
        try:
            response.update_status(
                'execution started at : {}'.format(dt.now()), 20)

            ################################
            # reading in the input arguments
            ################################
            LOGGER.info('read in the arguments')
            resource = archiveextract(
                resource=[res.file for res in request.inputs['resource']])

            # If files are from different datasets.
            # i.e. files: ...output1/slp.1999.nc and ...output2/slp.1997.nc will not be sorted with just .sort()
            # So:
            if type(resource) == list:
                resource = sorted(
                    resource, key=lambda i: path.splitext(path.basename(i))[0])
            else:
                resource = [resource]

            season = request.inputs['season'][0].data
            LOGGER.info('season %s', season)

            bboxDef = '-80,50,20,70'  # in general format

            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or abs(float(bboxStr[1]) > 180)
                    or abs(float(bboxStr[2]) > 90)
                    or abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug(
                    'BBOX is out of the range, using default instead: %s ' %
                    (bboxStr))
                bboxStr = bboxStr.split(',')

            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            period = request.inputs['period'][0].data
            LOGGER.info('period %s', period)
            anualcycle = request.inputs['anualcycle'][0].data
            kappa = request.inputs['kappa'][0].data
            LOGGER.info('kappa %s', kappa)

            method = request.inputs['method'][0].data
            LOGGER.info('Calc annual cycle with %s', method)

            sseas = request.inputs['sseas'][0].data
            LOGGER.info('Annual cycle calc with %s', sseas)

            start = dt.strptime(period.split('-')[0], '%Y%m%d')
            end = dt.strptime(period.split('-')[1], '%Y%m%d')

            # OCGIS for models workaround - to catch 31 of Dec
            start = dt.combine(start, dt_time(12, 0))
            end = dt.combine(end, dt_time(12, 0))

            cycst = anualcycle.split('-')[0]
            cycen = anualcycle.split('-')[1]
            reference = [
                dt.strptime(cycst, '%Y%m%d'),
                dt.strptime(cycen, '%Y%m%d')
            ]
            LOGGER.debug('Reference start: %s , end: %s ' %
                         (reference[0], reference[1]))

            reference[0] = dt.combine(reference[0], dt_time(12, 0))
            reference[1] = dt.combine(reference[1], dt_time(12, 0))
            LOGGER.debug('New Reference start: %s , end: %s ' %
                         (reference[0], reference[1]))

            # Check if 360_day calendar (all months are exactly 30 days):
            try:
                modcal, calunits = get_calendar(resource[0])
                if '360_day' in modcal:
                    if start.day == 31:
                        start = start.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (start))
                    if end.day == 31:
                        end = end.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (end))
                    if reference[0].day == 31:
                        reference[0] = reference[0].replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' %
                                     (reference[0]))
                    if reference[1].day == 31:
                        reference[1] = reference[1].replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' %
                                     (reference[1]))
            except:
                LOGGER.debug('Could not detect calendar')

            LOGGER.debug('start: %s , end: %s ', start, end)
            LOGGER.info('bbox %s', bbox)
            LOGGER.info('period %s', period)
            LOGGER.info('season %s', season)
        except Exception as e:
            msg = 'failed to read in the arguments'
            LOGGER.exception(msg)
            raise Exception(msg)

        ############################################################
        # get the required bbox and time region from resource data
        ############################################################
        response.update_status('start subsetting', 30)

        from blackswan.ocgis_module import call
        from blackswan.utils import get_variable, get_timerange
        time_range = [start, end]

        tmp_resource = []
        for re in resource:
            s, e = get_timerange(re)
            tmpSt = dt.strptime(s, '%Y%m%d')
            tmpEn = dt.strptime(e, '%Y%m%d')
            if ((tmpSt <= end) and (tmpEn >= start)):
                tmp_resource.append(re)
                LOGGER.debug('Selected file: %s ' % (re))
        resource = tmp_resource

        # Here start trick with z... levels and regriding...
        # Otherwise call will give memory error for hires models like MIROC4h
        # TODO: Add level and domain selection as in wps_analogs_model for 4D var.

        variable = get_variable(resource)

        from blackswan.datafetch import reanalyses
        import uuid
        ref_var = 'slp'
        refR = 'NCEP'
        ref_rea = reanalyses(start=2014,
                             end=2014,
                             variable=ref_var,
                             dataset=refR)

        regr_res = []
        for z in resource:
            tmp_n = 'tmp_%s' % (uuid.uuid1())

            # XXXXXXX
            s, e = get_timerange(z)
            tmpSt = dt.strptime(s, '%Y%m%d')
            tmpEn = dt.strptime(e, '%Y%m%d')
            tmpSt = dt.combine(tmpSt, dt_time(0, 0))
            tmpEn = dt.combine(tmpEn, dt_time(23, 0))

            if ((tmpSt <= start) and (tmpEn >= end)):
                LOGGER.debug('Resource contains full record, selecting : %s ' %
                             (time_range))
                full_res = call(z, variable=variable, time_range=time_range)
            else:
                full_res = z

            LOGGER.debug(
                'The subset from the big model file, or initial file: %s ' %
                (full_res))

            # XXXXXXX

            # TODO: regrid needs here (???)
            # Check how to manage one big file with geopotential
            # TODO:
            # Adapt to work with levels for geopotential (check how its done for reanalysis process)

            # b0=call(resource=z, variable=variable,
            b0 = call(resource=full_res,
                      variable=variable,
                      spatial_wrapping='wrap',
                      cdover='system',
                      regrid_destination=ref_rea[0],
                      regrid_options='bil',
                      prefix=tmp_n)

            # TODO: Use cdo regrid outside call - before call...
            # Some issues with produced ocgis file inside ocgis_module cdo regrid:
            # cdo remapbil (Abort): Unsupported projection coordinates (Variable: psl)!

            # select domain
            b01 = call(resource=b0,
                       geom=bbox,
                       spatial_wrapping='wrap',
                       prefix='levregr_' + path.basename(z)[0:-3])
            tbr = 'rm -f %s' % (b0)
            system(tbr)
            tbr = 'rm -f %s.nc' % (tmp_n)
            system(tbr)
            # get full resource
            regr_res.append(b01)

        model_subset = call(regr_res, time_range=time_range)

        # TODO: CHANGE to cross-platform
        for i in regr_res:
            tbr = 'rm -f %s' % (i)
            system(tbr)

        # Get domain
        # from cdo import Cdo
        # from os import environ
        # cdo = Cdo(env=environ)

        # regr_res = []
        # for res_fn in resource:
        #    tmp_f = 'dom_' + path.basename(res_fn)
        #    comcdo = '%s,%s,%s,%s' % (bbox[0],bbox[2],bbox[1],bbox[3])
        #    cdo.sellonlatbox(comcdo, input=res_fn, output=tmp_f)
        #    # tmp_f = call(resource=res_fn, geom=bbox, spatial_wrapping='wrap', prefix=tmp_f)
        #    regr_res.append(tmp_f)
        #    LOGGER.debug('File with selected domain: %s ' % (tmp_f))

        # model_subset = call(
        #    # resource=resource, variable=variable,
        #    resource=regr_res, variable=variable,
        #    geom=bbox, spatial_wrapping='wrap', time_range=time_range,  # conform_units_to=conform_units_to
        # )

        LOGGER.info('Dataset subset done: %s ' % model_subset)
        response.update_status('dataset subsetted', 40)

        #####################
        # computing anomalies
        #####################

        response.update_status('computing anomalies ', 50)

        model_anomal = wr.get_anomalies(model_subset,
                                        reference=reference,
                                        method=method,
                                        sseas=sseas)

        ###################
        # extracting season
        ####################
        model_season = wr.get_season(model_anomal, season=season)
        response.update_status('values normalized', 60)

        ####################
        # call the R scripts
        ####################
        response.update_status('Start weather regime clustering ', 70)
        import shlex
        import subprocess
        from blackswan import config
        from os.path import curdir, exists, join

        try:
            # rworkspace = curdir
            Rsrc = config.Rsrc_dir()
            Rfile = 'weatherregimes_model.R'

            infile = model_season  # model_subset #model_ponderate
            # modelname = 'MODEL'
            # yr1 = start.year
            # yr2 = end.year
            ip, output_graphics = mkstemp(dir=curdir, suffix='.pdf')
            ip, file_pca = mkstemp(dir=curdir, suffix='.txt')
            ip, file_class = mkstemp(dir=curdir, suffix='.Rdat')

            args = [
                'Rscript',
                join(Rsrc, Rfile),
                '%s/' % curdir,
                '%s/' % Rsrc,
                '%s' % infile,
                '%s' % variable,
                '%s' % output_graphics,
                '%s' % file_pca,
                '%s' % file_class,
                '%s' % season,
                '%s' % start.year,
                '%s' % end.year,
                '%s' % 'MODEL',
                '%s' % kappa
            ]
            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))
        except Exception as e:
            msg = 'failed to build the R command %s' % e
            LOGGER.error(msg)
            raise Exception(msg)
        try:
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            # ,shell=True
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.debug('R outlog errors:\n %s ' % error)
            if len(output) > 0:
                response.update_status('**** weatherregime in R suceeded', 80)
            else:
                LOGGER.error('NO! output returned from R call')
        except Exception as e:
            msg = 'weatherregime in R %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        response.update_status('Weather regime clustering done ', 90)
        ############################################
        # set the outputs
        ############################################
        # response.update_status('Set the process outputs ', 95)
        response.outputs['Routput_graphic'].file = output_graphics
        response.outputs['output_pca'].file = file_pca
        response.outputs['output_classification'].file = file_class
        response.outputs['output_netcdf'].file = model_season
        response.update_status('done', 100)
        return response
Пример #3
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        response.update_status('execution started at : %s ' % dt.now(), 5)

        ################################
        # reading in the input arguments
        ################################
        try:
            response.update_status(
                'execution started at : {}'.format(dt.now()), 5)

            ################################
            # reading in the input arguments
            ################################
            LOGGER.info('read in the arguments')

            nsim = request.inputs['nsim'][0].data
            LOGGER.info('nsim %s', nsim)

            yfile = request.inputs['yfile'][0].file
            LOGGER.info('yfile %s', yfile)

            anafile1 = request.inputs['anafile1'][0].file
            LOGGER.info('anafile1 %s', anafile1)

            anafile2 = request.inputs['anafile2'][0].file
            LOGGER.info('anafile2 %s', anafile2)

        except Exception as e:
            msg = 'failed to read in the arguments'
            LOGGER.exception(msg)
            raise Exception(msg)

        ####################
        # call the R scripts
        ####################
        response.update_status('Start anattribution', 50)
        import shlex
        import subprocess
        import pandas
        import matplotlib.pyplot as plt
        from blackswan import config
        from os.path import curdir, exists, join

        # try:
        ip, output_graphics = mkstemp(dir=curdir,
                                      suffix='.pdf',
                                      prefix='anna_plots')
        LOGGER.info('output_graphics %s', output_graphics)

        ip, output_txt = mkstemp(dir=curdir, suffix='.txt', prefix='anna_ysim')
        LOGGER.info('output_txt %s', output_txt)

        # compute the average of temperature in January 2018
        # ytable = pandas.read_table(yfile, sep = " ", skipinitialspace = True)
        # idx = [x >= 20180101 and x < 20190101 for x in ytable.date]
        # tas_jan18 = ytable.iloc[idx, 1]
        # tas_jan18 = tas_jan18.mean(axis=0)

        # generate other possible realisations of temperature for January 2018 conditionnaly to the atmospheric circulation

        #for period P1
        ysim_p1 = analogs_generator(anafile=anafile1, yfile=yfile, nsim=nsim)
        ymean_p1 = ysim_p1.mean(axis=1)
        print ysim_p1

        #for period P2
        ysim_p2 = analogs_generator(anafile=anafile2, yfile=yfile, nsim=nsim)
        ymean_p2 = ysim_p2.mean(axis=1)
        print ysim_p2
        LOGGER.info('analogue generator done!')

        # Format the data into a Data.Frame to plot boxplots
        plotdat = pandas.concat([ymean_p1, ymean_p2], axis=1)
        plotdat.columns = ["P1", "P2"]
        print plotdat

        plotdat.to_csv(output_txt, sep=' ', index=False, header=True)
        LOGGER.info('writing output_txt done!')

        fig1 = plt.figure()
        # plt.axvline(x=tas_jan18)
        plt.hist(ymean_p1, alpha=0.5, label='P1')
        plt.hist(ymean_p2, alpha=0.5, label='P2')
        plt.legend(loc='upper right')
        LOGGER.info('plot1 done!')

        fig2 = plt.figure()
        plt.boxplot([ymean_p1, ymean_p2])
        LOGGER.info('plot2 done!')
        #plt.axhline(y=tas_jan18)

        from matplotlib.backends.backend_pdf import PdfPages
        pp = PdfPages(output_graphics)
        pp.savefig(fig1)
        pp.savefig(fig2)
        pp.close()
        response.update_status('**** anatribution in R suceeded', 90)
        LOGGER.info('saving plots done!')

        #except Exception as e:
        #   msg = 'Error in analogues_generator %s ' % e
        #   LOGGER.error(msg)
        #   raise Exception(msg)

        response.update_status('Anattribution done ', 92)
        ############################################
        # set the outputs
        ############################################
        response.update_status('Set the process outputs ', 95)
        response.outputs['Py_output_graphic'].file = output_graphics
        LOGGER.info('output_graphics %s', response.outputs)
        response.outputs['Ysims'].file = output_txt
        LOGGER.info('output_graphics %s', response.outputs)
        response.update_status('done', 100)
        return response
Пример #4
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        response.update_status('execution started at : {}'.format(dt.now()), 5)

        ################################
        # reading in the input arguments
        ################################
        try:
            LOGGER.info('read in the arguments')
            # resources = self.getInputValues(identifier='resources')
            season = request.inputs['season'][0].data
            LOGGER.info('season %s', season)

            period = request.inputs['period'][0].data
            LOGGER.info('period %s', period)
            anualcycle = request.inputs['anualcycle'][0].data

            start = dt.strptime(period.split('-')[0], '%Y%m%d')
            end = dt.strptime(period.split('-')[1], '%Y%m%d')
            LOGGER.debug('start: %s , end: %s ' % (start, end))

            resource = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))
            # resource = archiveextract(resource=[res.file for res in request.inputs['resource']])
            url_Rdat = request.inputs['Rdat'][0].data
            url_dat = request.inputs['dat'][0].data
            url_ref_file = request.inputs['netCDF'][0].data  # can be None
            # season = self.getInputValues(identifier='season')[0]
            # period = self.getInputValues(identifier='period')[0]
            # anualcycle = self.getInputValues(identifier='anualcycle')[0]
            LOGGER.info('period %s' % str(period))
            LOGGER.info('season %s' % str(season))
            LOGGER.info('read in the arguments')
            LOGGER.info('url_ref_file: %s' % url_ref_file)
            LOGGER.info('url_Rdat: %s' % url_Rdat)
            LOGGER.info('url_dat: %s' % url_dat)
        except Exception as e:
            LOGGER.debug('failed to convert arguments %s ' % e)

        ############################
        # fetching trainging data
        ############################

        try:
            dat = abspath(download(url_dat))
            Rdat = abspath(download(url_Rdat))
            LOGGER.info('training data fetched')
        except Exception as e:
            LOGGER.error('failed to fetch training data %s' % e)

        ##########################################################
        # get the required bbox and time region from resource data
        ##########################################################
        # from flyingpigeon.weatherregimes import get_level
        try:
            from blackswan.ocgis_module import call
            from blackswan.utils import get_variable
            time_range = [start, end]

            variable = get_variable(resource)

            if len(url_ref_file) > 0:
                ref_file = download(url_ref_file)
                model_subset = call(
                    resource=resource,
                    variable=variable,
                    time_range=
                    time_range,  # conform_units_to=conform_units_to, geom=bbox, spatial_wrapping='wrap',
                    regrid_destination=ref_file,
                    regrid_options='bil')
                LOGGER.info('Dataset subset with regridding done: %s ' %
                            model_subset)
            else:
                model_subset = call(
                    resource=resource,
                    variable=variable,
                    time_range=
                    time_range,  # conform_units_to=conform_units_to, geom=bbox, spatial_wrapping='wrap',
                )
                LOGGER.info('Dataset time period extracted: %s ' %
                            model_subset)
        except:
            LOGGER.exception('failed to make a data subset ')

        #######################
        # computing anomalies
        #######################
        try:
            cycst = anualcycle.split('-')[0]
            cycen = anualcycle.split('-')[1]
            reference = [
                dt.strptime(cycst, '%Y%m%d'),
                dt.strptime(cycen, '%Y%m%d')
            ]
            model_anomal = wr.get_anomalies(model_subset,
                                            reference=reference,
                                            sseas='multi')

            #####################
            # extracting season
            #####################

            model_season = wr.get_season(model_anomal, season=season)
        except:
            LOGGER.exception('failed to compute anualcycle or seasons')

        #######################
        # call the R scripts
        #######################

        import shlex
        import subprocess
        from blackswan import config
        from os.path import curdir, exists, join

        try:
            rworkspace = curdir
            Rsrc = config.Rsrc_dir()
            Rfile = 'weatherregimes_projection.R'

            yr1 = start.year
            yr2 = end.year
            time = get_time(model_season)  # , format='%Y%m%d')

            # ip, output_graphics = mkstemp(dir=curdir ,suffix='.pdf')
            ip, file_pca = mkstemp(dir=curdir, suffix='.txt')
            ip, file_class = mkstemp(dir=curdir, suffix='.Rdat')
            ip, output_frec = mkstemp(dir=curdir, suffix='.txt')

            args = [
                'Rscript',
                join(Rsrc, Rfile),
                '%s/' % curdir,
                '%s/' % Rsrc,
                '%s' % model_season,
                '%s' % variable,
                '%s' % str(time).strip("[]").replace("'", "").replace(" ", ""),
                # '%s' % output_graphics,
                '%s' % dat,
                '%s' % Rdat,
                '%s' % file_pca,
                '%s' % file_class,
                '%s' % output_frec,
                '%s' % season,
                '%s' % start.year,
                '%s' % end.year,
                '%s' % 'MODEL'
            ]

            LOGGER.info('Rcall builded')
        except Exception as e:
            msg = 'failed to build the R command %s' % e
            LOGGER.error(msg)
            raise Exception(msg)
        try:
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            # , shell=True
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.debug('R outlog errors:\n %s ' % error)
            if len(output) > 0:
                response.update_status('**** weatherregime in R suceeded', 90)
            else:
                LOGGER.error('NO! output returned from R call')
        except Exception as e:
            msg = 'weatherregime in R %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        #################
        # set the outputs
        #################

        response.update_status('Set the process outputs ', 95)

        response.outputs['output_pca'].file = file_pca
        response.outputs['output_classification'].file = file_class
        response.outputs['output_netcdf'].file = model_season
        response.outputs['output_frequency'].file = output_frec

        response.update_status('done', 100)
        return response
Пример #5
0
    def _handler(self, request, response):

        # LOGGER.debug('CURDIR XXXX : %s ' % (abspath(curdir)))
        # LOGGER.debug('WORKDIR XXXX : %s ' % (self.workdir))
        os.chdir(self.workdir)
        # LOGGER.debug('CURDIR XXXX : %s ' % (abspath(curdir)))

        init_process_logger('log.txt')
        # init_process_logger(os.path.join(self.workdir, 'log.txt'))

        # response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        response.update_status('execution started at : {}'.format(dt.now()), 5)

        process_start_time = time.time()  # measure process execution time ...
        start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        try:
            response.update_status('read input parameter : %s ' % dt.now(), 6)

            refSt = request.inputs['refSt'][0].data
            refEn = request.inputs['refEn'][0].data
            dateSt = request.inputs['dateSt'][0].data
            dateEn = request.inputs['dateEn'][0].data
            seasonwin = request.inputs['seasonwin'][0].data
            nanalog = request.inputs['nanalog'][0].data
            timres = request.inputs['timeres'][0].data

            bboxDef = '-20,40,30,70'  # in general format

            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or
                    abs(float(bboxStr[1]) > 180) or
                    abs(float(bboxStr[2]) > 90) or
                    abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug('BBOX is out of the range, using default instead: %s ' % (bboxStr))
                bboxStr = bboxStr.split(',')

            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            normalize = request.inputs['normalize'][0].data
            detrend = request.inputs['detrend'][0].data
            plot = request.inputs['plot'][0].data
            distance = request.inputs['dist'][0].data
            outformat = request.inputs['outformat'][0].data
            timewin = request.inputs['timewin'][0].data

            model_var = request.inputs['reanalyses'][0].data
            model, var = model_var.split('_')

            LOGGER.info('input parameters set')
            response.update_status('Read in and convert the arguments', 7)
        except Exception as e:
            msg = 'failed to read input prameter %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ######################################
        # convert types and set environment
        ######################################
        try:
            response.update_status('Preparing enviroment converting arguments', 8)
            LOGGER.debug('date: %s %s %s %s ' % (type(refSt), refEn, dateSt, dateSt))

            start = min(refSt, dateSt)
            end = max(refEn, dateEn)

            if normalize == 'None':
                seacyc = False
            else:
                seacyc = True

            if outformat == 'ascii':
                outformat = '.txt'
            elif outformat == 'netCDF':
                outformat = '.nc'
            else:
                LOGGER.exception('output format not valid')

        except Exception as e:
            msg = 'failed to set environment %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ###########################
        # set the environment
        ###########################

        response.update_status('fetching data from archive', 9)

        try:
            if model == 'NCEP':
                getlevel = False
                if 'z' in var:
                    level = var.strip('z')
                    # conform_units_to = None
                else:
                    level = None
                    if var == 'precip':
                        var = 'pr_wtr'
                    # conform_units_to = 'hPa'
            elif '20CRV2' in model:
                getlevel = False
                if 'z' in var:
                    level = var.strip('z')
                    # conform_units_to = None
                else:
                    level = None
                    # conform_units_to = 'hPa'
            else:
                LOGGER.exception('Reanalyses dataset not known')
            LOGGER.info('environment set for model: %s' % model)
        except Exception:
            msg = 'failed to set environment'
            LOGGER.exception(msg)
            raise Exception(msg)

        ##########################################
        # fetch Data from original data archive
        ##########################################

        # NOTE: If ref is say 1950 - 1990, and sim is just 1 week in 2017:
        # - ALL the data will be downloaded, 1950 - 2017
        try:
            model_nc = rl(start=start.year,
                          end=end.year,
                          dataset=model,
                          variable=var, timres=timres, getlevel=getlevel)
            LOGGER.info('reanalyses data fetched')
        except Exception:
            msg = 'failed to get reanalyses data'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('subsetting region of interest', 10)

        LOGGER.debug("start and end time: %s - %s" % (start, end))
        time_range = [start, end]

        # Checking memory and dataset size
        model_size = get_files_size(model_nc)
        memory_avail = psutil.virtual_memory().available
        thrs = 0.3  # 30%
        if (model_size >= thrs * memory_avail):
            ser_r = True
        else:
            ser_r = False

        # ################################

        # For 20CRV2 geopotential height, daily dataset for 100 years is about 50 Gb
        # So it makes sense, to operate it step-by-step
        # TODO: need to create dictionary for such datasets (for models as well)
        # TODO: benchmark the method bellow for NCEP z500 for 60 years

#        if ('20CRV2' in model) and ('z' in var):
        if ('z' in var):
            tmp_total = []
            origvar = get_variable(model_nc)

            for z in model_nc:
                # tmp_n = 'tmp_%s' % (uuid.uuid1())
                b0 = call(resource=z, variable=origvar, level_range=[int(level), int(level)], geom=bbox,
                spatial_wrapping='wrap', prefix='levdom_' + os.path.basename(z)[0:-3])
                tmp_total.append(b0)

            tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
            inter_subset_tmp = call(resource=tmp_total, variable=origvar, time_range=time_range)

            # Clean
            for i in tmp_total:
                tbr = 'rm -f %s' % (i)
                os.system(tbr)

            # Create new variable
            ds = Dataset(inter_subset_tmp, mode='a')
            z_var = ds.variables.pop(origvar)
            dims = z_var.dimensions
            new_var = ds.createVariable('z%s' % level, z_var.dtype, dimensions=(dims[0], dims[2], dims[3]))
            new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
            # new_var.setncatts({k: z_var.getncattr(k) for k in z_var.ncattrs()})
            ds.close()
            model_subset_tmp = call(inter_subset_tmp, variable='z%s' % level)
        else:
            if ser_r:
                LOGGER.debug('Process reanalysis step-by-step')
                tmp_total = []
                for z in model_nc:
                    # tmp_n = 'tmp_%s' % (uuid.uuid1())
                    b0 = call(resource=z, variable=var, geom=bbox, spatial_wrapping='wrap',
                            prefix='Rdom_' + os.path.basename(z)[0:-3])
                    tmp_total.append(b0)
                tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
                model_subset_tmp = call(resource=tmp_total, variable=var, time_range=time_range)
            else:
                LOGGER.debug('Using whole dataset at once')
                model_subset_tmp = call(resource=model_nc, variable=var,
                                        geom=bbox, spatial_wrapping='wrap', time_range=time_range,
                                        )

        # If dataset is 20CRV2 the 6 hourly file should be converted to daily.
        # Option to use previously 6h data from cache (if any) and not download daily files.

        # Disabled for now
        # if '20CRV2' in model:
        #     if timres == '6h':
        #         from cdo import Cdo

        #         cdo = Cdo(env=os.environ)
        #         model_subset = '%s.nc' % uuid.uuid1()
        #         tmp_f = '%s.nc' % uuid.uuid1()

        #         cdo_op = getattr(cdo, 'daymean')
        #         cdo_op(input=model_subset_tmp, output=tmp_f)
        #         sti = '00:00:00'
        #         cdo_op = getattr(cdo, 'settime')
        #         cdo_op(sti, input=tmp_f, output=model_subset)
        #         LOGGER.debug('File Converted from: %s to daily' % (timres))
        #     else:
        #         model_subset = model_subset_tmp
        # else:
        #     model_subset = model_subset_tmp

        # Remove \/\/\/ if work with 6h data...
        model_subset = model_subset_tmp

        LOGGER.info('Dataset subset done: %s ', model_subset)

        response.update_status('dataset subsetted', 15)

        # BLOCK OF DETRENDING of model_subset !
        # Original model subset kept to further visualisaion if needed
        # Now is issue with SLP:
        # TODO 1 Keep trend as separate file
        # TODO 2 Think how to add options to plot abomalies AND original data...
        #        May be do archive and simulation = call.. over NOT detrended data and keep it as well
        # TODO 3 Check with faster smoother add removing trend of each grid

        if detrend == 'None':
            orig_model_subset = model_subset
        else:
            orig_model_subset = remove_mean_trend(model_subset, varname=var)

        # ======================================

        LOGGER.debug("get_input_subset_dataset took %s seconds.",
                     time.time() - start_time)
        response.update_status('**** Input data fetched', 20)

        ########################
        # input data preperation
        ########################
        response.update_status('Start preparing input data', 30)
        start_time = time.time()  # measure data preperation ...

        try:
            # Construct descriptive filenames for the three files
            # listed in config file

            # refDatesString = dt.strftime(refSt, '%Y-%m-%d') + "_" + dt.strftime(refEn, '%Y-%m-%d')
            # simDatesString = dt.strftime(dateSt, '%Y-%m-%d') + "_" + dt.strftime(dateEn, '%Y-%m-%d')

            # Fix < 1900 issue...
            refDatesString = refSt.isoformat().strip().split("T")[0] + "_" + refEn.isoformat().strip().split("T")[0]
            simDatesString = dateSt.isoformat().strip().split("T")[0] + "_" + dateEn.isoformat().strip().split("T")[0]

            archiveNameString = "base_" + var + "_" + refDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                                % (bbox[0], bbox[2], bbox[1], bbox[3])
            simNameString = "sim_" + var + "_" + simDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                            % (bbox[0], bbox[2], bbox[1], bbox[3])
            archive = call(resource=model_subset,
                           time_range=[refSt, refEn],
                           prefix=archiveNameString)
            simulation = call(resource=model_subset, time_range=[dateSt, dateEn],
                              prefix=simNameString)
            LOGGER.info('archive and simulation files generated: %s, %s'
                        % (archive, simulation))
        except Exception as e:
            msg = 'failed to prepare archive and simulation files %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            if seacyc is True:
                LOGGER.info('normalization function with method: %s '
                            % normalize)
                seasoncyc_base, seasoncyc_sim = analogs.seacyc(
                    archive,
                    simulation,
                    method=normalize)
            else:
                seasoncyc_base = seasoncyc_sim = None
        except Exception as e:
            msg = 'failed to generate normalization files %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        output_file = 'output.txt'
        files = [os.path.abspath(archive), os.path.abspath(simulation), output_file]
        LOGGER.debug("Data preperation took %s seconds.",
                     time.time() - start_time)

        ############################
        # generate the config file
        ############################
        config_file = analogs.get_configfile(
            files=files,
            seasoncyc_base=seasoncyc_base,
            seasoncyc_sim=seasoncyc_sim,
            base_id=model,
            sim_id=model,
            timewin=timewin,
            varname=var,
            seacyc=seacyc,
            cycsmooth=91,
            nanalog=nanalog,
            seasonwin=seasonwin,
            distfun=distance,
            outformat=outformat,
            calccor=True,
            silent=False,
            # period=[dt.strftime(refSt, '%Y-%m-%d'), dt.strftime(refEn, '%Y-%m-%d')],
            period=[refSt.isoformat().strip().split("T")[0], refEn.isoformat().strip().split("T")[0]],
            bbox="{0[0]},{0[2]},{0[1]},{0[3]}".format(bbox))
        response.update_status('generated config file', 40)
        #######################
        # CASTf90 call
        #######################
        start_time = time.time()  # measure call castf90

        # -----------------------
        try:
            import ctypes
            # TODO: This lib is for linux
            mkl_rt = ctypes.CDLL('libmkl_rt.so')
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('Current number of threads: %s' % (nth))
            mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('NEW number of threads: %s' % (nth))
            # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
            os.environ['MKL_NUM_THREADS'] = str(nth)
            os.environ['OMP_NUM_THREADS'] = str(nth)
        except Exception as e:
            msg = 'Failed to set THREADS %s ' % e
            LOGGER.debug(msg)
        # -----------------------

        # ##### TEMPORAL WORKAROUND! With instaled hdf5-1.8.18 in anaconda ###############
        # ##### MUST be removed after castf90 recompiled with the latest hdf version
        # ##### NOT safe
        os.environ['HDF5_DISABLE_VERSION_CHECK'] = '1'
        # hdflib = os.path.expanduser("~") + '/anaconda/lib'
        # hdflib = os.getenv("HOME") + '/anaconda/lib'
        import pwd
        hdflib = pwd.getpwuid(os.getuid()).pw_dir + '/anaconda/lib'
        os.environ['LD_LIBRARY_PATH'] = hdflib
        # ################################################################################

        response.update_status('Start CASTf90 call', 50)
        try:
            # response.update_status('execution of CASTf90', 50)
            cmd = ['analogue.out', config_file]
            LOGGER.debug("castf90 command: %s", cmd)
            output = subprocess.check_output(cmd, stderr=subprocess.STDOUT)
            LOGGER.info('analogue output:\n %s', output)
            response.update_status('**** CASTf90 suceeded', 60)
        except CalledProcessError as e:
            msg = 'CASTf90 failed:\n{0}'.format(e.output)
            LOGGER.exception(msg)
            raise Exception(msg)
        LOGGER.debug("castf90 took %s seconds.", time.time() - start_time)

        # TODO: Add try - except for pdfs
        if plot == 'Yes':
            analogs_pdf = analogs.plot_analogs(configfile=config_file)
        else:
            analogs_pdf = 'dummy_plot.pdf'
            with open(analogs_pdf, 'a'): os.utime(analogs_pdf, None)

        response.update_status('preparing output', 70)
        
        response.outputs['analog_pdf'].file = analogs_pdf
        response.outputs['config'].file = config_file
        response.outputs['analogs'].file = output_file
        response.outputs['output_netcdf'].file = simulation
        response.outputs['target_netcdf'].file = archive

        if seacyc is True:
            response.outputs['base_netcdf'].file = seasoncyc_base
            response.outputs['sim_netcdf'].file = seasoncyc_sim
        else:
            # TODO: Still unclear how to overpass unknown number of outputs
            dummy_base = 'dummy_base.nc'
            dummy_sim = 'dummy_sim.nc'
            with open(dummy_base, 'a'): os.utime(dummy_base, None)
            with open(dummy_sim, 'a'): os.utime(dummy_sim, None)
            response.outputs['base_netcdf'].file = dummy_base
            response.outputs['sim_netcdf'].file = dummy_sim

        ########################
        # generate analog viewer
        ########################

        formated_analogs_file = analogs.reformat_analogs(output_file)
        # response.outputs['formated_analogs'].storage = FileStorage()
        response.outputs['formated_analogs'].file = formated_analogs_file
        LOGGER.info('analogs reformated')
        response.update_status('reformatted analog file', 80)

        viewer_html = analogs.render_viewer(
            # configfile=response.outputs['config'].get_url(),
            configfile=config_file,
            # datafile=response.outputs['formated_analogs'].get_url())
            datafile=formated_analogs_file)
        response.outputs['output'].file = viewer_html
        response.update_status('Successfully generated analogs viewer', 90)
        LOGGER.info('rendered pages: %s ', viewer_html)

        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        response.outputs['output_log'].file = 'log.txt'
        return response
Пример #6
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')

        response.update_status('execution started at : %s ' % dt.now(), 10)

        ################################
        # reading in the input arguments
        ################################
        try:
            response.update_status('execution started at : {}'.format(dt.now()), 20)

            ################################
            # reading in the input arguments
            ################################
            LOGGER.debug('read in the arguments')
            LOGGER.debug('request.input[files] %s ' % (request.inputs['files']))
            # files = archiveextract(resource=[res.file for res in request.inputs['files']])
            files = [res.file for res in request.inputs['files']]
            # files = request.inputs['files'][0].data.split(",")
            LOGGER.debug('files %s ' % (files))
            # files = archiveextract(resource=files)
            LOGGER.debug('files %s ' % (files))
            
            xname = request.inputs['xname'][0].data
            LOGGER.debug('xname: %s ' % (xname))
            yname = request.inputs['yname'][0].data
            LOGGER.debug('yname: %s ' % (yname))
            
            rcp = request.inputs['rcp'][0].data.lower()
            LOGGER.debug('rcp: %s ' % (rcp))

            xfiles = [f for f in files if basename(f).split("_")[0] == xname]
            f_xhist = [f for f in xfiles if basename(f).split("_")[3] == "historical"]
            f_xrcp = [f for f in xfiles if basename(f).split("_")[3] in rcp]
            LOGGER.debug('xfiles %s ' % (xfiles))
            LOGGER.debug('f_xhist %s ' % (f_xhist))
            LOGGER.debug('f_xrcp %s ' % (f_xrcp))

            yfiles = [f for f in files if basename(f).split("_")[0] == yname]
            f_yhist = [f for f in yfiles if basename(f).split("_")[3] == "historical"]
            f_yrcp = [f for f in yfiles if basename(f).split("_")[3] in rcp]
            LOGGER.debug('yfiles %s ' % (yfiles))
            LOGGER.debug('f_yhist %s ' % (f_yhist))
            LOGGER.debug('f_yrcp %s ' % (f_yrcp))
            
            y_compute_ano = request.inputs['y_compute_ano'][0].data
            x_compute_ano = request.inputs['x_compute_ano'][0].data
            LOGGER.debug('Y compute_ano: %s ' % (y_compute_ano))
            LOGGER.debug('X compute_ano: %s ' % (x_compute_ano))
 
            y_start_ano = request.inputs['y_start_ano'][0].data
            y_end_ano = request.inputs['y_end_ano'][0].data
            x_start_ano = request.inputs['x_start_ano'][0].data
            x_end_ano = request.inputs['x_end_ano'][0].data
            LOGGER.debug('Y start_ano: %s ' % (y_start_ano))
            LOGGER.debug('Y end_ano: %s ' % (y_end_ano))
            LOGGER.debug('X start_ano: %s ' % (x_start_ano))
            LOGGER.debug('X end_ano: %s ' % (x_end_ano))

            y_bbox = request.inputs['y_bbox'][0].data
            x_bbox = request.inputs['x_bbox'][0].data
            LOGGER.debug('Y bbox: %s ' % (y_bbox))
            LOGGER.debug('X bbox: %s ' % (x_bbox))

            y_season = request.inputs['y_season'][0].data
            x_season = request.inputs['x_season'][0].data
            LOGGER.debug('Y season: %s ' % (y_season))
            LOGGER.debug('X season: %s ' % (x_season))

            y_spatial_aggregator = request.inputs['y_spatial_aggregator'][0].data
            x_spatial_aggregator = request.inputs['x_spatial_aggregator'][0].data
            LOGGER.debug('Y spatial_aggregator: %s ' % (y_spatial_aggregator))
            LOGGER.debug('X spatial_aggregator: %s ' % (x_spatial_aggregator))

            y_time_aggregator = request.inputs['y_time_aggregator'][0].data
            x_time_aggregator = request.inputs['x_time_aggregator'][0].data
            LOGGER.debug('Y time_aggregator: %s ' % (y_time_aggregator))
            LOGGER.debug('X time_aggregator: %s ' % (x_time_aggregator))
            
            y_first_spatial = request.inputs['y_first_spatial'][0].data
            x_first_spatial = request.inputs['x_first_spatial'][0].data
            LOGGER.debug('Y first_spatial: %s ' % (y_first_spatial))
            LOGGER.debug('X first_spatial: %s ' % (x_first_spatial))

            stat_model = request.inputs['stat_model'][0].data
            LOGGER.debug('stat_model: %s ' % (stat_model))

            qthreshold = request.inputs['qthreshold'][0].data
            LOGGER.debug('qthreshold: %s ' % (qthreshold))
            
            nbootstrap = request.inputs['nbootstrap'][0].data
            LOGGER.debug('nbootstrap: %s ' % (nbootstrap))

        except Exception as e:
            msg = 'failed to read in the arguments %s' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ####################
        # Run farallnar.py
        ####################
        response.update_status('Start FARallnat analysis', 5)
        try:
            # ip, Routput_graphics = mkstemp(dir=curdir, suffix='.pdf')
            # ip, Rdata = mkstemp(dir=curdir, suffix='.rds')
            Rdata = "FARallnat_data.rds"
            Routput_graphics = "FARallnat_plots.pdf"
            # add xname and yname as arguments
            compute_far(plot_pdf = Routput_graphics,
                    data_rds = Rdata,
                    yvarname = yname,
                    xvarname = xname,
                    f_yhist = f_yhist,
                    f_yrcp =  f_yrcp,
                    f_xhist =  f_xhist,
                    f_xrcp = f_xrcp,
                    y_compute_ano = y_compute_ano,
                    y_start_ano = y_start_ano,
                    y_end_ano = y_end_ano,
                    y_bbox = y_bbox,
                    y_season = y_season,
                    y_first_spatial = y_first_spatial,
                    y_spatial_aggregator = y_spatial_aggregator,
                    y_time_aggregator = y_time_aggregator,
                    x_compute_ano = x_compute_ano,
                    x_start_ano = x_start_ano,
                    x_end_ano = x_end_ano,
                    x_bbox = x_bbox,
                    x_season = x_season,
                    x_first_spatial = x_first_spatial,
                    x_spatial_aggregator = x_spatial_aggregator,
                    x_time_aggregator = x_time_aggregator,
                    stat_model = stat_model,
                    qthreshold = qthreshold,
                    nbootstrap = nbootstrap
                    )
 
        except Exception as e:
            msg = 'fails in farallnat.py %s' % e
            LOGGER.error(msg)
            raise Exception(msg)

        response.update_status('FARallanat analysis done ', 90)
        
        ############################################
        # set the outputs
        ############################################
        # response.update_status('Set the process outputs ', 95)
        response.outputs['Routput_graphics'].file = Routput_graphics
        response.outputs['Rdata'].file = Rdata
        response.update_status('done', 100)
        return response
Пример #7
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        response.update_status('execution started at : {}'.format(dt.now()), 5)

        process_start_time = time.time()  # measure process execution time ...
        start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        try:
            response.update_status('read input parameter : %s ' % dt.now(), 6)

            dateSt = request.inputs['dateSt'][0].data
            dateEn = request.inputs['dateEn'][0].data

            # timres = request.inputs['timeres'][0].data
            timres = 'day'
            season = request.inputs['season'][0].data
            bboxDef = '-20,40,30,70'  # in general format

            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or
                    abs(float(bboxStr[1]) > 180) or
                    abs(float(bboxStr[2]) > 90) or
                    abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug('BBOX is out of the range, using default instead: %s ' % (bboxStr))
                bboxStr = bboxStr.split(',')

            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            distance = request.inputs['dist'][0].data
            method = request.inputs['method'][0].data

            model_var = request.inputs['reanalyses'][0].data
            model, var = model_var.split('_')

            LOGGER.info('input parameters set')
            response.update_status('Read in and convert the arguments', 7)
        except Exception as e:
            msg = 'failed to read input prameter %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ######################################
        # convert types and set environment
        ######################################

        start = dateSt
        end = dateEn

        ###########################
        # set the environment
        ###########################

        response.update_status('fetching data from archive', 9)

        try:
            if model == 'NCEP':
                getlevel = False
                if 'z' in var:
                    level = var.strip('z')
                    # conform_units_to = None
                else:
                    level = None
                    if var == 'precip':
                        var = 'pr_wtr'
                    # conform_units_to = 'hPa'
            elif '20CRV2' in model:
                getlevel = False
                if 'z' in var:
                    level = var.strip('z')
                    # conform_units_to = None
                else:
                    level = None
                    # conform_units_to = 'hPa'
            else:
                LOGGER.exception('Reanalyses dataset not known')
            LOGGER.info('environment set for model: %s' % model)
        except Exception:
            msg = 'failed to set environment'
            LOGGER.exception(msg)
            raise Exception(msg)

        ##########################################
        # fetch Data from original data archive
        ##########################################

        # NOTE: If ref is say 1950 - 1990, and sim is just 1 week in 2017:
        # - ALL the data will be downloaded, 1950 - 2017
        try:
            model_nc = rl(start=start.year,
                          end=end.year,
                          dataset=model,
                          variable=var, timres=timres, getlevel=getlevel)
            LOGGER.info('reanalyses data fetched')
        except Exception:
            msg = 'failed to get reanalyses data'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('subsetting region of interest', 10)
        # from flyingpigeon.weatherregimes import get_level
        LOGGER.debug("start and end time: %s - %s" % (start, end))
        time_range = [start, end]

        # Checking memory and dataset size
        model_size = get_files_size(model_nc)
        memory_avail = psutil.virtual_memory().available
        thrs = 0.5  # 50%
        if (model_size >= thrs * memory_avail):
            ser_r = True
        else:
            ser_r = False

        # ################################

        # For 20CRV2 geopotential height, daily dataset for 100 years is about 50 Gb
        # So it makes sense, to operate it step-by-step
        # TODO: need to create dictionary for such datasets (for models as well)
        # TODO: benchmark the method bellow for NCEP z500 for 60 years

#        if ('20CRV2' in model) and ('z' in var):
        if ('z' in var):
            tmp_total = []
            origvar = get_variable(model_nc)

            for z in model_nc:
                # tmp_n = 'tmp_%s' % (uuid.uuid1())
                b0 = call(resource=z, variable=origvar, level_range=[int(level), int(level)], geom=bbox,
                spatial_wrapping='wrap', prefix='levdom_' + os.path.basename(z)[0:-3])
                tmp_total.append(b0)

            tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
            inter_subset_tmp = call(resource=tmp_total, variable=origvar, time_range=time_range)

            # Clean
            for i in tmp_total:
                tbr = 'rm -f %s' % (i)
                os.system(tbr)

            # Create new variable
            ds = Dataset(inter_subset_tmp, mode='a')
            z_var = ds.variables.pop(origvar)
            dims = z_var.dimensions
            new_var = ds.createVariable('z%s' % level, z_var.dtype, dimensions=(dims[0], dims[2], dims[3]))
            new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
            # new_var.setncatts({k: z_var.getncattr(k) for k in z_var.ncattrs()})
            ds.close()
            model_subset_tmp = call(inter_subset_tmp, variable='z%s' % level)
        else:
            if ser_r:
                LOGGER.debug('Process reanalysis step-by-step')
                tmp_total = []
                for z in model_nc:
                    # tmp_n = 'tmp_%s' % (uuid.uuid1())
                    b0 = call(resource=z, variable=var, geom=bbox, spatial_wrapping='wrap',
                            prefix='Rdom_' + os.path.basename(z)[0:-3])
                    tmp_total.append(b0)
                tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
                model_subset_tmp = call(resource=tmp_total, variable=var, time_range=time_range)
            else:
                LOGGER.debug('Using whole dataset at once')
                model_subset_tmp = call(resource=model_nc, variable=var,
                                        geom=bbox, spatial_wrapping='wrap', time_range=time_range,
                                        )

        # If dataset is 20CRV2 the 6 hourly file should be converted to daily.
        # Option to use previously 6h data from cache (if any) and not download daily files.

        if '20CRV2' in model:
            if timres == '6h':
                from cdo import Cdo

                cdo = Cdo(env=os.environ)
                model_subset = '%s.nc' % uuid.uuid1()
                tmp_f = '%s.nc' % uuid.uuid1()

                cdo_op = getattr(cdo, 'daymean')
                cdo_op(input=model_subset_tmp, output=tmp_f)
                sti = '00:00:00'
                cdo_op = getattr(cdo, 'settime')
                cdo_op(sti, input=tmp_f, output=model_subset)
                LOGGER.debug('File Converted from: %s to daily' % (timres))
            else:
                model_subset = model_subset_tmp
        else:
            model_subset = model_subset_tmp

        LOGGER.info('Dataset subset done: %s ', model_subset)

        response.update_status('dataset subsetted', 15)

        # ======================================

        LOGGER.debug("get_input_subset_dataset took %s seconds.",
                     time.time() - start_time)
        response.update_status('**** Input data fetched', 20)

        ########################
        # input data preperation
        ########################
        response.update_status('Start preparing input data', 30)
        start_time = time.time()  # measure data preperation ...

        # -----------------------
        #  try:
        #     import ctypes
        #     # TODO: This lib is for linux
        #     mkl_rt = ctypes.CDLL('libmkl_rt.so')
        #     nth = mkl_rt.mkl_get_max_threads()
        #     LOGGER.debug('Current number of threads: %s' % (nth))
        #     mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
        #     nth = mkl_rt.mkl_get_max_threads()
        #     LOGGER.debug('NEW number of threads: %s' % (nth))
        #     # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
        #     os.environ['MKL_NUM_THREADS'] = str(nth)
        #     os.environ['OMP_NUM_THREADS'] = str(nth)
        # except Exception as e:
        #     msg = 'Failed to set THREADS %s ' % e
        #     LOGGER.debug(msg)
        # -----------------------

        response.update_status('Start DIM calc', 50)

        # Calculation of Local Dimentsions ==================
        LOGGER.debug('Calculation of the distances using: %s metric' % (distance))
        LOGGER.debug('Calculation of the dims with: %s' % (method))

        dim_filename = '%s.txt' % model
        tmp_dim_fn = '%s.txt' % uuid.uuid1()

        Rsrc = config.Rsrc_dir()

        if (method == 'Python'):
            try:
                l_dist, l_theta = localdims(resource=model_subset, variable=var, distance=str(distance))
                response.update_status('**** Dims with Python suceeded', 60)
            except:
                LOGGER.exception('NO! output returned from Python call')

        if (method == 'Python_wrap'):
            try:
                l_dist, l_theta = localdims_par(resource=model_subset, variable=var, distance=str(distance))
                response.update_status('**** Dims with Python suceeded', 60)
            except:
                LOGGER.exception('NO! output returned from Python call')

        if (method == 'R'):
            # from os.path import join
            Rfile = 'localdimension_persistence_fullD.R'
            args = ['Rscript', os.path.join(Rsrc, Rfile),
                    '%s' % model_subset, '%s' % var,
                    '%s' % tmp_dim_fn]
            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))

            try:
                output, error = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
                LOGGER.info('R outlog info:\n %s ' % output)
                LOGGER.exception('R outlog errors:\n %s ' % error)
                if len(output) > 0:
                    response.update_status('**** Dims with R suceeded', 60)
                else:
                    LOGGER.exception('NO! output returned from R call')
                # HERE READ DATA FROM TEXT FILES
                R_resdim = loadtxt(fname=tmp_dim_fn, delimiter=',')
                l_theta = R_resdim[:, 0]
                l_dist = R_resdim[:, 1]
            except:
                msg = 'Dim with R'
                LOGGER.exception(msg)
                raise Exception(msg)

        if (method == 'R_wrap'):
            # from os.path import join
            Rfile = 'localdimension_persistence_serrD.R'
            args = ['Rscript', os.path.join(Rsrc, Rfile),
                    '%s' % model_subset, '%s' % var,
                    '%s' % tmp_dim_fn]
            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))

            try:
                output, error = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
                LOGGER.info('R outlog info:\n %s ' % output)
                LOGGER.exception('R outlog errors:\n %s ' % error)
                if len(output) > 0:
                    response.update_status('**** Dims with R_wrap suceeded', 60)
                else:
                    LOGGER.exception('NO! output returned from R call')
                # HERE READ DATA FROM TEXT FILES
                R_resdim = loadtxt(fname=tmp_dim_fn, delimiter=',')
                l_theta = R_resdim[:, 0]
                l_dist = R_resdim[:, 1]
            except:
                msg = 'Dim with R_wrap'
                LOGGER.exception(msg)
                raise Exception(msg)

        try:
            res_times = get_time(model_subset)
        except:
            LOGGER.debug('Not standard calendar')
            res_times = analogs.get_time_nc(model_subset)

        # plot 1
        ld_pdf = analogs.pdf_from_ld(x=l_dist, y=l_theta)
        #

        res_times=[res_times[i].isoformat().strip().split("T")[0].replace('-','') for i in range(len(res_times))]

        # concatenation of values
        concat_vals = column_stack([res_times, l_theta, l_dist])
        savetxt(dim_filename, concat_vals, fmt='%s', delimiter=',')

        # output season
        try:
            seas = _TIMEREGIONS_[season]['month'] # [12, 1, 2]
            LOGGER.info('Season to grep from TIMEREGIONS: %s ' % season)
            LOGGER.info('Season N to grep from TIMEREGIONS: %s ' % seas)
        except:
            LOGGER.info('No months in TIMEREGIONS, moving to months')
            try:
                seas = _MONTHS_[season]['month'] # [1] or [2] or ...
                LOGGER.info('Season to grep from MONTHS: %s ' % season)
                LOGGER.info('Season N to grep from MONTHS: %s ' % seas)
            except:
                seas = [1,2,3,4,5,6,7,8,9,10,11,12]
        ind = []

        # TODO: change concat_vals[i][0][4:6] to dt_obj.month !!!
        for i in range(len(res_times)):
            if (int(concat_vals[i][0][4:6]) in seas[:]):
                ind.append(i)
        sf = column_stack([concat_vals[i] for i in ind]).T
        seas_dim_filename = season + '_' + dim_filename
        savetxt(seas_dim_filename, sf, fmt='%s', delimiter=',')

        # -------------------------- plot with R ---------------
        R_plot_file = 'plot_csv.R'
        ld2_pdf = 'local_dims.pdf'
        ld2_seas_pdf = season + '_local_dims.pdf'

        args = ['Rscript', os.path.join(Rsrc, R_plot_file),
                '%s' % dim_filename,
                '%s' % ld2_pdf]
        try:
            output, error = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.exception('R outlog errors:\n %s ' % error)
        except:
            msg = 'Could not produce plot'
            LOGGER.exception(msg)
            # TODO: Here need produce empty pdf(s) to pass to output

        args = ['Rscript', os.path.join(Rsrc, R_plot_file),
                '%s' % seas_dim_filename,
                '%s' % ld2_seas_pdf]
        try:
            output, error = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.exception('R outlog errors:\n %s ' % error)
        except:
            msg = 'Could not produce plot'
            LOGGER.exception(msg)
            # TODO: Here need produce empty pdf(s) to pass to output
        # 
        # ====================================================

        response.update_status('preparing output', 80)
        response.outputs['ldist'].file = dim_filename
        response.outputs['ldist_seas'].file = seas_dim_filename
        response.outputs['ld_pdf'].file = ld_pdf
        response.outputs['ld2_pdf'].file = ld2_pdf
        response.outputs['ld2_seas_pdf'].file = ld2_seas_pdf

        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        return response
Пример #8
0
    def _handler(self, request, response):
        chdir(self.workdir)
        init_process_logger('log.txt')

        process_start_time = time.time()  # measure process execution time ...
        response.update_status('execution started at : %s ' % dt.now(), 5)

        start_time = time.time()  # measure init ...

        resource = archiveextract(
            resource=rename_complexinputs(request.inputs['resource']))

        # Filter resource:
        if type(resource) == list:
            resource = sorted(resource,
                              key=lambda i: path.splitext(path.basename(i))[0])
        else:
            resource = [resource]

        refSt = request.inputs['refSt'][0].data
        refEn = request.inputs['refEn'][0].data
        dateSt = request.inputs['dateSt'][0].data
        dateEn = request.inputs['dateEn'][0].data

        regrset = request.inputs['regrset'][0].data
        direction = request.inputs['direction'][0].data
        # Check if model has 360_day calendar:

        try:
            modcal, calunits = get_calendar(resource[0])
            LOGGER.debug('CALENDAR: %s' % (modcal))
            if '360_day' in modcal:
                if direction == 're2mo':
                    if refSt.day == 31:
                        refSt = refSt.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (refSt))
                    if refEn.day == 31:
                        refEn = refEn.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (refEn))
                else:  # mo2re
                    if dateSt.day == 31:
                        dateSt = dateSt.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' %
                                     (dateSt))
                    if dateEn.day == 31:
                        dateEn = dateEn.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' %
                                     (dateEn))
        except:
            LOGGER.debug('Could not detect calendar')

        seasonwin = request.inputs['seasonwin'][0].data
        nanalog = request.inputs['nanalog'][0].data

        bboxDef = '-20,40,30,70'  # in general format

        bbox = []
        bboxStr = request.inputs['BBox'][0].data
        LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
        bboxStr = bboxStr.split(',')

        # Checking for wrong cordinates and apply default if nesessary
        if (abs(float(bboxStr[0])) > 180 or abs(float(bboxStr[1]) > 180)
                or abs(float(bboxStr[2]) > 90) or abs(float(bboxStr[3])) > 90):
            bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
            LOGGER.debug(
                'BBOX is out of the range, using default instead: %s ' %
                (bboxStr))
            bboxStr = bboxStr.split(',')

        bbox.append(float(bboxStr[0]))
        bbox.append(float(bboxStr[2]))
        bbox.append(float(bboxStr[1]))
        bbox.append(float(bboxStr[3]))

        normalize = request.inputs['normalize'][0].data
        plot = request.inputs['plot'][0].data
        distance = request.inputs['dist'][0].data
        outformat = request.inputs['outformat'][0].data
        timewin = request.inputs['timewin'][0].data

        model_var = request.inputs['reanalyses'][0].data
        model, var = model_var.split('_')

        try:
            if direction == 're2mo':
                anaSt = dt.combine(dateSt, dt_time(
                    0, 0))  # dt.strptime(dateSt[0], '%Y-%m-%d')
                anaEn = dt.combine(dateEn, dt_time(
                    0, 0))  # dt.strptime(dateEn[0], '%Y-%m-%d')
                refSt = dt.combine(refSt, dt_time(
                    12, 0))  # dt.strptime(refSt[0], '%Y-%m-%d')
                refEn = dt.combine(refEn, dt_time(
                    12, 0))  # dt.strptime(refEn[0], '%Y-%m-%d')
                r_time_range = [anaSt, anaEn]
                m_time_range = [refSt, refEn]
            elif direction == 'mo2re':
                anaSt = dt.combine(dateSt, dt_time(
                    12, 0))  # dt.strptime(refSt[0], '%Y-%m-%d')
                anaEn = dt.combine(dateEn, dt_time(
                    12, 0))  # dt.strptime(refEn[0], '%Y-%m-%d')
                refSt = dt.combine(refSt, dt_time(
                    0, 0))  # dt.strptime(dateSt[0], '%Y-%m-%d')
                refEn = dt.combine(refEn, dt_time(
                    0, 0))  # dt.strptime(dateEn[0], '%Y-%m-%d')
                r_time_range = [refSt, refEn]
                m_time_range = [anaSt, anaEn]
            else:
                LOGGER.exception(
                    'failed to find time periods for comparison direction')
        except:
            msg = 'failed to put simulation and reference time in order'
            LOGGER.exception(msg)
            raise Exception(msg)

        if normalize == 'None':
            seacyc = False
        else:
            seacyc = True

        if outformat == 'ascii':
            outformat = '.txt'
        elif outformat == 'netCDF':
            outformat = '.nc'
        else:
            LOGGER.exception('output format not valid')

        try:
            if model == 'NCEP':
                # getlevel = True
                getlevel = False
                if 'z' in var:
                    level = var.strip('z')
                    variable = 'hgt'
                    # conform_units_to='hPa'
                else:
                    variable = 'slp'
                    level = None
                    # conform_units_to='hPa'
            elif '20CRV2' in model:
                getlevel = False
                if 'z' in var:
                    variable = 'hgt'
                    level = var.strip('z')
                    # conform_units_to=None
                else:
                    variable = 'prmsl'
                    level = None
                    # conform_units_to='hPa'
            else:
                LOGGER.exception('Reanalyses model not known')
            LOGGER.info('environment set')
        except:
            msg = 'failed to set environment'
            LOGGER.exception(msg)
            raise Exception(msg)

        # LOGGER.exception("init took %s seconds.", time.time() - start_time)
        response.update_status('Read in the arguments', 10)

        #################
        # get input data
        #################
        # TODO: do not forget to select years

        start_time = time.time()  # measure get_input_data ...
        response.update_status('fetching input data', 20)
        try:
            if direction == 're2mo':
                nc_reanalyses = reanalyses(start=anaSt.year,
                                           end=anaEn.year,
                                           variable=var,
                                           dataset=model,
                                           getlevel=getlevel)
            else:
                nc_reanalyses = reanalyses(start=refSt.year,
                                           end=refEn.year,
                                           variable=var,
                                           dataset=model,
                                           getlevel=getlevel)

            if type(nc_reanalyses) == list:
                nc_reanalyses = sorted(
                    nc_reanalyses,
                    key=lambda i: path.splitext(path.basename(i))[0])
            else:
                nc_reanalyses = [nc_reanalyses]

            # For 20CRV2 geopotential height, daily dataset for 100 years is about 50 Gb
            # So it makes sense, to operate it step-by-step
            # TODO: need to create dictionary for such datasets (for models as well)
            # TODO: benchmark the method bellow for NCEP z500 for 60 years, may be use the same (!)
            # TODO Now everything regrid to the reanalysis

            # if ('20CRV2' in model) and ('z' in var):
            if ('z' in var):
                tmp_total = []
                origvar = get_variable(nc_reanalyses[0])

                for z in nc_reanalyses:
                    # tmp_n = 'tmp_%s' % (uuid.uuid1())
                    b0 = call(resource=z,
                              variable=origvar,
                              level_range=[int(level), int(level)],
                              geom=bbox,
                              spatial_wrapping='wrap',
                              prefix='levdom_' + path.basename(z)[0:-3])
                    tmp_total.append(b0)

                tmp_total = sorted(
                    tmp_total,
                    key=lambda i: path.splitext(path.basename(i))[0])
                inter_subset_tmp = call(resource=tmp_total,
                                        variable=origvar,
                                        time_range=r_time_range)

                # Create new variable
                ds = Dataset(inter_subset_tmp, mode='a')
                z_var = ds.variables.pop(origvar)
                dims = z_var.dimensions
                new_var = ds.createVariable('z%s' % level,
                                            z_var.dtype,
                                            dimensions=(dims[0], dims[2],
                                                        dims[3]))
                new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
                # new_var.setncatts({k: z_var.getncattr(k) for k in z_var.ncattrs()})
                ds.close()
                nc_subset = call(inter_subset_tmp, variable='z%s' % level)
                # Clean
                for i in tmp_total:
                    tbr = 'rm -f %s' % (i)
                    system(tbr)
                # for i in inter_subset_tmp
                tbr = 'rm -f %s' % (inter_subset_tmp)
                system(tbr)
            else:
                # TODO: ADD HERE serial as well as in analogs reanalysis process!!
                nc_subset = call(
                    resource=nc_reanalyses,
                    variable=var,
                    geom=bbox,
                    spatial_wrapping='wrap',
                    time_range=r_time_range,
                )

            response.update_status('**** Input reanalyses data fetched', 30)
        except:
            msg = 'failed to fetch or subset input files'
            LOGGER.exception(msg)
            raise Exception(msg)

        ########################
        # input data preperation
        ########################
        response.update_status('Start preparing input data', 40)

        m_start = m_time_range[0]
        m_end = m_time_range[1]

        # ===============================================================
        # REMOVE resources from the list which are out of interest from the list
        # (years > and < than requested for calculation)

        tmp_resource = []

        for re in resource:
            s, e = get_timerange(re)
            tmpSt = dt.strptime(s, '%Y%m%d')
            tmpEn = dt.strptime(e, '%Y%m%d')
            if ((tmpSt <= m_end) and (tmpEn >= m_start)):
                tmp_resource.append(re)
                LOGGER.debug('Selected file: %s ' % (re))
        resource = tmp_resource

        start_time = time.time()  # mesure data preperation ...
        # TODO: Check the callendars ! for model vs reanalyses.
        # TODO: Check the units! model vs reanalyses.
        try:
            m_total = []
            modvar = get_variable(resource)
            # resource properties
            ds = Dataset(resource[0])
            m_var = ds.variables[modvar]
            dims = list(m_var.dimensions)
            dimlen = len(dims)

            try:
                model_id = ds.getncattr('model_id')
            except AttributeError:
                model_id = 'Unknown model'

            LOGGER.debug('MODEL: %s ' % (model_id))

            lev_units = 'hPa'

            if (dimlen > 3):
                lev = ds.variables[dims[1]]
                # TODO: actually index [1] need to be detected... assuming zg(time, plev, lat, lon)
                lev_units = lev.units

                if (lev_units == 'Pa'):
                    m_level = str(int(level) * 100)
                else:
                    m_level = level
            else:
                m_level = None

            if level == None:
                level_range = None
            else:
                level_range = [int(m_level), int(m_level)]

            ds.close()

            for z in resource:
                tmp_n = 'tmp_%s' % (uuid.uuid1())
                # TODO: Important! if only 1 file - select time period from that first!

                # select level and regrid

                # \/\/ working version 19Feb2019
                # b0 = call(resource=z, variable=modvar, level_range=level_range,
                #         spatial_wrapping='wrap', cdover='system',
                #         regrid_destination=nc_reanalyses[0], regrid_options='bil', prefix=tmp_n)

                try:
                    b0 = call(resource=z,
                              variable=modvar,
                              level_range=level_range,
                              spatial_wrapping='wrap',
                              cdover='system',
                              regrid_destination=nc_subset,
                              regrid_options='bil',
                              prefix=tmp_n)
                except:
                    b0 = call(resource=z,
                              variable=modvar,
                              level_range=level_range,
                              spatial_wrapping='wrap',
                              cdover='system',
                              regrid_destination=nc_reanalyses[0],
                              regrid_options='bil',
                              prefix=tmp_n)

                # select domain (already selected in fact, if regrided to 'nc_subset')
                b01 = call(resource=b0,
                           geom=bbox,
                           spatial_wrapping='wrap',
                           prefix='levregr_' + path.basename(z)[0:-3])

                # TODO: REPLACE rm -f by os.remove() !
                tbr = 'rm -f %s' % (b0)
                system(tbr)
                tbr = 'rm -f %s.nc' % (tmp_n)
                system(tbr)
                # get full resource
                m_total.append(b01)

            model_subset = call(m_total, time_range=m_time_range)

            for i in m_total:
                tbr = 'rm -f %s' % (i)
                system(tbr)

            if m_level is not None:
                # Create new variable in model set
                ds = Dataset(model_subset, mode='a')
                mod_var = ds.variables.pop(modvar)
                dims = mod_var.dimensions
                new_modvar = ds.createVariable('z%s' % level,
                                               mod_var.dtype,
                                               dimensions=(dims[0], dims[2],
                                                           dims[3]))
                new_modvar[:, :, :] = squeeze(mod_var[:, 0, :, :])
                # new_var.setncatts({k: z_var.getncattr(k) for k in z_var.ncattrs()})
                ds.close()
                mod_subset = call(model_subset, variable='z%s' % level)
            else:
                mod_subset = model_subset

        except:
            msg = 'failed to subset simulation or reference data'
            LOGGER.exception(msg)
            raise Exception(msg)

# --------------------------------------------
        try:
            if direction == 'mo2re':
                simulation = mod_subset
                archive = nc_subset
                base_id = model
                sim_id = model_id
            elif direction == 're2mo':
                simulation = nc_subset
                archive = mod_subset
                base_id = model_id
                sim_id = model
            else:
                LOGGER.exception('direction not valid: %s ' % direction)
        except:
            msg = 'failed to find comparison direction'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            if level is not None:
                out_var = 'z%s' % level
            else:
                var_archive = get_variable(archive)
                var_simulation = get_variable(simulation)
                if var_archive != var_simulation:
                    rename_variable(archive,
                                    oldname=var_archive,
                                    newname=var_simulation)
                    out_var = var_simulation
                    LOGGER.info('varname %s in netCDF renamed to %s' %
                                (var_archive, var_simulation))
        except:
            msg = 'failed to rename variable in target files'
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            if seacyc is True:
                seasoncyc_base, seasoncyc_sim = analogs.seacyc(
                    archive, simulation, method=normalize)
            else:
                seasoncyc_base = None
                seasoncyc_sim = None
        except:
            msg = 'failed to prepare seasonal cycle reference files'
            LOGGER.exception(msg)
            raise Exception(msg)

        # ip, output = mkstemp(dir='.', suffix='.txt')
        # output_file = path.abspath(output)

        output_file = 'output.txt'

        ################################
        # Prepare names for config.txt #
        ################################

        # refDatesString = dt.strftime(refSt, '%Y-%m-%d') + "_" + dt.strftime(refEn, '%Y-%m-%d')
        # simDatesString = dt.strftime(dateSt, '%Y-%m-%d') + "_" + dt.strftime(dateEn, '%Y-%m-%d')

        # Fix < 1900 issue...
        refDatesString = refSt.isoformat().strip().split(
            "T")[0] + "_" + refEn.isoformat().strip().split("T")[0]
        simDatesString = dateSt.isoformat().strip().split(
            "T")[0] + "_" + dateEn.isoformat().strip().split("T")[0]

        archiveNameString = "base_" + out_var + "_" + refDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                            % (bbox[0], bbox[2], bbox[1], bbox[3]) + '.nc'
        simNameString = "sim_" + out_var + "_" + simDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                        % (bbox[0], bbox[2], bbox[1], bbox[3]) + '.nc'

        move(archive, archiveNameString)
        move(simulation, simNameString)

        archive = archiveNameString
        simulation = simNameString

        files = [path.abspath(archive), path.abspath(simulation), output_file]

        ############################
        # generating the config file
        ############################

        response.update_status('writing config file', 50)
        start_time = time.time()  # measure write config ...

        try:
            config_file = analogs.get_configfile(
                files=files,
                seasoncyc_base=seasoncyc_base,
                seasoncyc_sim=seasoncyc_sim,
                base_id=base_id,
                sim_id=sim_id,
                timewin=timewin,
                # varname=var,
                varname=out_var,
                seacyc=seacyc,
                cycsmooth=91,
                nanalog=nanalog,
                seasonwin=seasonwin,
                distfun=distance,
                outformat=outformat,
                calccor=True,
                silent=False,
                # period=[dt.strftime(refSt, '%Y-%m-%d'), dt.strftime(refEn, '%Y-%m-%d')],
                period=[
                    refSt.isoformat().strip().split("T")[0],
                    refEn.isoformat().strip().split("T")[0]
                ],
                bbox="%s,%s,%s,%s" % (bbox[0], bbox[2], bbox[1], bbox[3]))
        except:
            msg = 'failed to generate config file'
            LOGGER.exception(msg)
            raise Exception(msg)

        #######################
        # CASTf90 call
        #######################
        import subprocess
        import shlex

        start_time = time.time()  # measure call castf90

        response.update_status('Start CASTf90 call', 60)

        # -----------------------
        try:
            import ctypes
            # TODO: This lib is for linux
            mkl_rt = ctypes.CDLL('libmkl_rt.so')
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('Current number of threads: %s' % (nth))
            mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('NEW number of threads: %s' % (nth))
            # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
            environ['MKL_NUM_THREADS'] = str(nth)
            environ['OMP_NUM_THREADS'] = str(nth)
        except Exception as e:
            msg = 'Failed to set THREADS %s ' % e
            LOGGER.debug(msg)
        # -----------------------

        # ##### TEMPORAL WORKAROUND! With instaled hdf5-1.8.18 in anaconda ###############
        # ##### MUST be removed after castf90 recompiled with the latest hdf version
        # ##### NOT safe
        environ['HDF5_DISABLE_VERSION_CHECK'] = '1'
        # hdflib = os.path.expanduser("~") + '/anaconda/lib'
        # hdflib = os.getenv("HOME") + '/anaconda/lib'
        import pwd
        hdflib = pwd.getpwuid(getuid()).pw_dir + '/anaconda/lib'
        environ['LD_LIBRARY_PATH'] = hdflib
        # ################################################################################

        try:
            response.update_status('execution of CASTf90', 70)
            cmd = 'analogue.out %s' % path.relpath(config_file)
            # system(cmd)
            args = shlex.split(cmd)
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            LOGGER.info('analogue.out info:\n %s ' % output)
            LOGGER.exception('analogue.out errors:\n %s ' % error)
            response.update_status('**** CASTf90 suceeded', 80)
        except:
            msg = 'CASTf90 failed'
            LOGGER.exception(msg)
            raise Exception(msg)

        LOGGER.debug("castf90 took %s seconds.", time.time() - start_time)

        # TODO: Add try - except for pdfs
        if plot == 'Yes':
            analogs_pdf = analogs.plot_analogs(configfile=config_file)
        else:
            analogs_pdf = 'dummy_plot.pdf'
            with open(analogs_pdf, 'a'):
                utime(analogs_pdf, None)

        response.update_status('preparting output', 90)

        # Stopper to keep twitcher results, for debug
        # dummy=dummy
        response.outputs['analog_pdf'].file = analogs_pdf
        response.outputs['config'].file = config_file
        response.outputs['analogs'].file = output_file
        response.outputs['output_netcdf'].file = simulation
        response.outputs['target_netcdf'].file = archive

        ########################
        # generate analog viewer
        ########################

        formated_analogs_file = analogs.reformat_analogs(output_file)
        response.outputs['formated_analogs'].file = formated_analogs_file
        LOGGER.info('analogs reformated')
        # response.update_status('reformatted analog file', 95)
        viewer_html = analogs.render_viewer(
            # configfile=response.outputs['config'].get_url(),
            configfile=config_file,
            # datafile=response.outputs['formated_analogs'].get_url())
            datafile=formated_analogs_file)
        response.outputs['output'].file = viewer_html
        response.update_status('Successfully generated analogs viewer', 95)
        LOGGER.info('rendered pages: %s ', viewer_html)
        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        response.outputs['output_log'].file = 'log.txt'
        return response
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        from datetime import datetime as dt
        from blackswan import weatherregimes as wr
        from tempfile import mkstemp

        response.update_status('execution started at : {}'.format(dt.now()), 5)

        ################################
        # reading in the input arguments
        ################################
        LOGGER.info('read in the arguments')
        # resources = self.getInputValues(identifier='resources')
        season = request.inputs['season'][0].data
        LOGGER.info('season %s', season)

        bboxDef = '-80,50,20,70'  # in general format

        bbox = []
        bboxStr = request.inputs['BBox'][0].data
        LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
        bboxStr = bboxStr.split(',')

        # Checking for wrong cordinates and apply default if nesessary
        if (abs(float(bboxStr[0])) > 180 or abs(float(bboxStr[1]) > 180)
                or abs(float(bboxStr[2]) > 90) or abs(float(bboxStr[3])) > 90):
            bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
            LOGGER.debug(
                'BBOX is out of the range, using default instead: %s ' %
                (bboxStr))
            bboxStr = bboxStr.split(',')

        bbox.append(float(bboxStr[0]))
        bbox.append(float(bboxStr[2]))
        bbox.append(float(bboxStr[1]))
        bbox.append(float(bboxStr[3]))
        LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
        LOGGER.debug('BBOX original: %s ' % (bboxStr))

        model_var = request.inputs['reanalyses'][0].data
        model, variable = model_var.split('_')

        period = request.inputs['period'][0].data
        LOGGER.info('period %s', period)
        anualcycle = request.inputs['anualcycle'][0].data
        kappa = request.inputs['kappa'][0].data
        LOGGER.info('kappa %s', kappa)

        method = request.inputs['method'][0].data
        LOGGER.info('Calc annual cycle with %s', method)

        sseas = request.inputs['sseas'][0].data
        LOGGER.info('Annual cycle calc with %s', sseas)

        start = dt.strptime(period.split('-')[0], '%Y%m%d')
        end = dt.strptime(period.split('-')[1], '%Y%m%d')
        LOGGER.debug('start: %s , end: %s ' % (start, end))

        ###########################
        # set the environment
        ###########################

        response.update_status('fetching data from archive', 10)

        try:
            if model == 'NCEP':
                getlevel = False
                if 'z' in variable:
                    level = variable.strip('z')
                    # conform_units_to = None
                else:
                    level = None
                    # conform_units_to = 'hPa'
            elif '20CRV2' in model:
                getlevel = False
                if 'z' in variable:
                    level = variable.strip('z')
                    # conform_units_to = None
                else:
                    level = None
                    # conform_units_to = 'hPa'
            else:
                LOGGER.exception('Reanalyses dataset not known')
            LOGGER.info('environment set for model: %s' % model)
        except:
            msg = 'failed to set environment'
            LOGGER.exception(msg)
            raise Exception(msg)

        ##########################################
        # fetch Data from original data archive
        ##########################################

        from blackswan.datafetch import reanalyses as rl
        from blackswan.utils import get_variable
        # from os.path import basename, splitext
        from os import system
        from netCDF4 import Dataset
        from numpy import squeeze

        try:
            model_nc = rl(start=start.year,
                          end=end.year,
                          dataset=model,
                          variable=variable,
                          getlevel=getlevel)
            LOGGER.info('reanalyses data fetched')
        except:
            msg = 'failed to get reanalyses data'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('fetching data done', 20)
        ############################################################
        # get the required bbox and time region from resource data
        ############################################################

        response.update_status('subsetting region of interest', 30)

        time_range = [start, end]

        ############################################################
        # Block of level and domain selection for geop huge dataset
        ############################################################

        LevMulti = False

        # ===========================================================================================
        # Temporary add step-by-step also for pressure... for slow VM machine...
        if ('z' in variable) or ('p' in variable):
            tmp_total = []
            origvar = get_variable(model_nc)

            if ('z' in variable):
                level_range = [int(level), int(level)]
            else:
                level_range = None

            if (LevMulti == False):
                for z in model_nc:
                    b0 = call(resource=z,
                              variable=origvar,
                              level_range=level_range,
                              geom=bbox,
                              spatial_wrapping='wrap',
                              prefix='levdom_' + basename(z)[0:-3])
                    tmp_total.append(b0)
            else:
                # multiproc - no inprovements yet, need to check in hi perf machine...
                # -----------------------
                try:
                    import ctypes
                    import os
                    # TODO: This lib is for linux
                    mkl_rt = ctypes.CDLL('libmkl_rt.so')
                    nth = mkl_rt.mkl_get_max_threads()
                    LOGGER.debug('Current number of threads: %s' % (nth))
                    mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
                    nth = mkl_rt.mkl_get_max_threads()
                    LOGGER.debug('NEW number of threads: %s' % (nth))
                    # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
                    os.environ['MKL_NUM_THREADS'] = str(nth)
                    os.environ['OMP_NUM_THREADS'] = str(nth)
                except Exception as e:
                    msg = 'Failed to set THREADS %s ' % e
                    LOGGER.debug(msg)
                # -----------------------

                from multiprocessing import Pool
                pool = Pool()
                # from multiprocessing.dummy import Pool as ThreadPool
                # pool = ThreadPool()
                tup_var = [origvar] * len(model_nc)
                tup_lev = [level] * len(model_nc)
                tup_bbox = [bbox] * len(model_nc)
                tup_args = zip(model_nc, tup_var, tup_lev, tup_bbox)

                tmp_total = pool.map(ocgis_call_wrap, tup_args)
                pool.close()
                pool.join()

            LOGGER.debug('Temporal subset files: %s' % (tmp_total))

            tmp_total = sorted(tmp_total,
                               key=lambda i: splitext(basename(i))[0])
            inter_subset_tmp = call(resource=tmp_total,
                                    variable=origvar,
                                    time_range=time_range)

            # Clean
            for i in tmp_total:
                tbr = 'rm -f %s' % (i)
                system(tbr)

            if ('z' in variable):
                # Create new variable for Z geop
                ds = Dataset(inter_subset_tmp, mode='a')
                z_var = ds.variables.pop(origvar)
                dims = z_var.dimensions
                new_var = ds.createVariable('z%s' % level,
                                            z_var.dtype,
                                            dimensions=(dims[0], dims[2],
                                                        dims[3]))
                new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
                # new_var.setncatts({k: z_var.getncattr(k) for k in z_var.ncattrs()})
                ds.close()
                model_subset = call(inter_subset_tmp, variable='z%s' % level)
            else:
                model_subset = inter_subset_tmp
        else:
            model_subset = call(
                resource=model_nc,
                variable=variable,
                geom=bbox,
                spatial_wrapping='wrap',
                time_range=time_range,
                # conform_units_to=conform_units_to
            )
        # =============================================================================================
        LOGGER.info('Dataset subset done: %s ', model_subset)

        response.update_status('dataset subsetted', 40)
        ##############################################
        # computing anomalies
        ##############################################
        response.update_status('computing anomalies ', 50)

        cycst = anualcycle.split('-')[0]
        cycen = anualcycle.split('-')[1]
        reference = [
            dt.strptime(cycst, '%Y%m%d'),
            dt.strptime(cycen, '%Y%m%d')
        ]
        LOGGER.info('reference time: %s', reference)

        model_anomal = wr.get_anomalies(model_subset,
                                        reference=reference,
                                        method=method,
                                        sseas=sseas)  # , variable=variable)

        #####################
        # extracting season
        #####################
        response.update_status('normalizing data', 60)
        model_season = wr.get_season(model_anomal, season=season)

        response.update_status('anomalies computed and  normalized', 70)
        #######################
        # call the R scripts
        #######################
        response.update_status('Start weather regime clustering ', 80)
        import shlex
        import subprocess
        from blackswan import config
        from os.path import curdir, exists, join

        try:
            # rworkspace = curdir
            Rsrc = config.Rsrc_dir()
            Rfile = 'weatherregimes_model.R'

            infile = model_season  # model_subset #model_ponderate
            # modelname = model
            # yr1 = start.year
            # yr2 = end.year
            ip, output_graphics = mkstemp(dir=curdir, suffix='.pdf')
            ip, file_pca = mkstemp(dir=curdir, suffix='.txt')
            ip, file_class = mkstemp(dir=curdir, suffix='.Rdat')

            args = [
                'Rscript',
                join(Rsrc, Rfile),
                '%s/' % curdir,
                '%s/' % Rsrc,
                '%s' % infile,
                '%s' % variable,
                '%s' % output_graphics,
                '%s' % file_pca,
                '%s' % file_class,
                '%s' % season,
                '%s' % start.year,
                '%s' % end.year,
                '%s' % model_var,
                '%s' % kappa
            ]
            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))
        except:
            msg = 'failed to build the R command'
            LOGGER.exception(msg)
            raise Exception(msg)
        try:
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.exception('R outlog errors:\n %s ' % error)
            if len(output) > 0:
                response.update_status('**** weatherregime in R suceeded', 90)
            else:
                LOGGER.exception('NO! output returned from R call')
        except:
            msg = 'weatherregime in R'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('Weather regime clustering done ', 95)
        ############################################
        # set the outputs
        ############################################
        # response.update_status('Set the process outputs ', 96)

        response.outputs['Routput_graphic'].file = output_graphics
        response.outputs['output_pca'].file = file_pca
        response.outputs['output_classification'].file = file_class
        response.outputs['output_netcdf'].file = model_subset
        response.update_status('done', 100)
        return response
Пример #10
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        response.update_status('execution started at : {}'.format(dt.now()), 5)

        process_start_time = time.time()  # measure process execution time ...
        start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        # response.update_status('execution started at : %s ' % dt.now(), 5)
        # start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        try:
            response.update_status('read input parameter : %s ' % dt.now(), 10)
            resource = archiveextract(resource=rename_complexinputs(request.inputs['resource']))
            refSt = request.inputs['refSt'][0].data
            refEn = request.inputs['refEn'][0].data
            dateSt = request.inputs['dateSt'][0].data
            dateEn = request.inputs['dateEn'][0].data
            seasonwin = request.inputs['seasonwin'][0].data
            nanalog = request.inputs['nanalog'][0].data

            bboxDef = '-20,40,30,70'  # in general format
            # level = 500

            level = request.inputs['level'][0].data
            if (level == 500):
                dummylevel = 1000  # dummy workaround for cdo sellevel
            else:
                dummylevel = 500
            LOGGER.debug('LEVEL selected: %s hPa' % (level))

            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or
                    abs(float(bboxStr[1]) > 180) or
                    abs(float(bboxStr[2]) > 90) or
                    abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug('BBOX is out of the range, using default instead: %s ' % (bboxStr))
                bboxStr = bboxStr.split(',')

            # for i in bboxStr: bbox.append(int(i))
            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            normalize = request.inputs['normalize'][0].data
            plot = request.inputs['plot'][0].data
            distance = request.inputs['dist'][0].data
            outformat = request.inputs['outformat'][0].data
            timewin = request.inputs['timewin'][0].data
            detrend = request.inputs['detrend'][0].data

            LOGGER.info('input parameters set')
            response.update_status('Read in and convert the arguments', 20)
        except Exception as e:
            msg = 'failed to read input prameter %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        ######################################
        # convert types and set environment
        ######################################
        try:

            # not nesessary if fix ocgis_module.py
            refSt = dt.combine(refSt, dt_time(12, 0))
            refEn = dt.combine(refEn, dt_time(12, 0))
            dateSt = dt.combine(dateSt, dt_time(12, 0))
            dateEn = dt.combine(dateEn, dt_time(12, 0))

            # Check if 360_day calendar:
            try:
                if type(resource) is not list:
                    resource = [resource]

                modcal, calunits = get_calendar(resource[0])
                if '360_day' in modcal:
                    if refSt.day == 31:
                        refSt = refSt.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (refSt))
                    if refEn.day == 31:
                        refEn = refEn.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (refEn))
                    if dateSt.day == 31:
                        dateSt = dateSt.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (dateSt))
                    if dateEn.day == 31:
                        dateEn = dateEn.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' % (dateEn))
            except:
                LOGGER.debug('Could not detect calendar')

            if normalize == 'None':
                seacyc = False
            else:
                seacyc = True

            if outformat == 'ascii':
                outformat = '.txt'
            elif outformat == 'netCDF':
                outformat = '.nc'
            else:
                LOGGER.error('output format not valid')

            start = min(refSt, dateSt)
            end = max(refEn, dateEn)

            LOGGER.info('environment set')
        except Exception as e:
            msg = 'failed to set environment %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        LOGGER.debug("init took %s seconds.", time.time() - start_time)
        response.update_status('Read in and convert the arguments', 30)

        ########################
        # input data preperation
        ########################

        # TODO: Check if files containing more than one dataset

        response.update_status('Start preparing input data', 40)
        start_time = time.time()  # mesure data preperation ...
        try:
            # TODO: Add selection of the level. maybe bellow in call(..., level_range=[...,...])

            if type(resource) == list:
                # resource.sort()
                resource = sorted(resource, key=lambda i: path.splitext(path.basename(i))[0])
            else:
                resource = [resource]

            # ===============================================================
            # REMOVE resources which are out of interest from the list
            # (years > and < than requested for calculation)

            tmp_resource = []

            for re in resource:
                s,e = get_timerange(re)
                tmpSt = dt.strptime(s, '%Y%m%d')
                tmpEn = dt.strptime(e, '%Y%m%d')
                if ((tmpSt <= end) and (tmpEn >= start)):
                    tmp_resource.append(re)
                    LOGGER.debug('Selected file: %s ' % (re))
            resource = tmp_resource

            # Try to fix memory issue... (ocgis call for files like 20-30 gb... )
            # IF 4D - select pressure level before domain cut
            #
            # resource properties
            ds = Dataset(resource[0])
            variable = get_variable(resource[0])
            var = ds.variables[variable]
            dims = list(var.dimensions)
            dimlen = len(dims)

            try:
                model_id = ds.getncattr('model_id')
            except AttributeError:
                model_id = 'Unknown model'

            LOGGER.debug('MODEL: %s ' % (model_id))

            lev_units = 'hPa'

            if (dimlen > 3):
                lev = ds.variables[dims[1]]
                # actually index [1] need to be detected... assuming zg(time, plev, lat, lon)
                lev_units = lev.units

                if (lev_units == 'Pa'):
                    level = level * 100
                    dummylevel = dummylevel * 100
                    # TODO: OR check the NAME and units of vertical level and find 200 , 300, or 500 mbar in it
                    # Not just level = level * 100.

            # Get Levels
            from cdo import Cdo
            cdo = Cdo(env=environ)

            lev_res = []
            if(dimlen > 3):
                for res_fn in resource:
                    tmp_f = 'lev_' + path.basename(res_fn)
                    try:
                        tmp_f = call(resource=res_fn, variable=variable, spatial_wrapping='wrap',
                                     level_range=[int(level), int(level)], prefix=tmp_f[0:-3])
                    except:
                        comcdo = '%s,%s' % (level, dummylevel)
                        cdo.sellevel(comcdo, input=res_fn, output=tmp_f)
                    lev_res.append(tmp_f)
            else:
                lev_res = resource

            # ===============================================================
            # TODO: Before domain, Regrid to selected grid! (???) if no rean.
            # ================================================================

            # Get domain
            regr_res = []
            for res_fn in lev_res:
                tmp_f = 'dom_' + path.basename(res_fn)
                comcdo = '%s,%s,%s,%s' % (bbox[0], bbox[2], bbox[1], bbox[3])
                try:
                    tmp_f = call(resource=res_fn, geom=bbox, spatial_wrapping='wrap', prefix=tmp_f[0:-3])
                except:
                    cdo.sellonlatbox(comcdo, input=res_fn, output=tmp_f)
                regr_res.append(tmp_f)

            # ============================
            # Block to Detrend data
            # TODO 1 Keep trend as separate file
            # TODO 2 Think how to add options to plot abomalies AND original data...
            #        May be do archive and simulation = call.. over NOT detrended data and keep it as well
            if (dimlen > 3):
                res_tmp = get_level(regr_res, level=level)
                variable = 'z%s' % level
            else:
                res_tmp = call(resource=regr_res, spatial_wrapping='wrap')

            if detrend == 'None':
                orig_model_subset = res_tmp
            else:
                orig_model_subset = remove_mean_trend(res_tmp, varname=variable)

            # ============================

#            archive_tmp = call(resource=regr_res, time_range=[refSt, refEn], spatial_wrapping='wrap')
#            simulation_tmp = call(resource=regr_res, time_range=[dateSt, dateEn], spatial_wrapping='wrap')

            ################################
            # Prepare names for config.txt #
            ################################

            # refDatesString = dt.strftime(refSt, '%Y-%m-%d') + "_" + dt.strftime(refEn, '%Y-%m-%d')
            # simDatesString = dt.strftime(dateSt, '%Y-%m-%d') + "_" + dt.strftime(dateEn, '%Y-%m-%d')

            # Fix < 1900 issue...
            refDatesString = refSt.isoformat().strip().split("T")[0] + "_" + refEn.isoformat().strip().split("T")[0]
            simDatesString = dateSt.isoformat().strip().split("T")[0] + "_" + dateEn.isoformat().strip().split("T")[0]

            archiveNameString = "base_" + variable + "_" + refDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                                % (bbox[0], bbox[2], bbox[1], bbox[3])
            simNameString = "sim_" + variable + "_" + simDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                            % (bbox[0], bbox[2], bbox[1], bbox[3])

            archive = call(resource=res_tmp, time_range=[refSt, refEn], spatial_wrapping='wrap', prefix=archiveNameString)
            simulation = call(resource=res_tmp, time_range=[dateSt, dateEn], spatial_wrapping='wrap', prefix=simNameString)

            #######################################################################################

            if seacyc is True:
                seasoncyc_base, seasoncyc_sim = analogs.seacyc(archive, simulation, method=normalize)
            else:
                seasoncyc_base = None
                seasoncyc_sim = None
        except Exception as e:
            msg = 'failed to prepare archive and simulation files %s ' % e
            LOGGER.debug(msg)
            raise Exception(msg)
        ip, output = mkstemp(dir='.', suffix='.txt')
        output_file = path.abspath(output)
        files = [path.abspath(archive), path.abspath(simulation), output_file]

        LOGGER.debug("data preperation took %s seconds.", time.time() - start_time)

        ############################
        # generating the config file
        ############################

        # TODO: add MODEL name as argument

        response.update_status('writing config file', 50)
        start_time = time.time()  # measure write config ...

        try:
            config_file = analogs.get_configfile(
                files=files,
                seasoncyc_base=seasoncyc_base,
                seasoncyc_sim=seasoncyc_sim,
                base_id=model_id,
                sim_id=model_id,
                timewin=timewin,
                varname=variable,
                seacyc=seacyc,
                cycsmooth=91,
                nanalog=nanalog,
                seasonwin=seasonwin,
                distfun=distance,
                outformat=outformat,
                calccor=True,
                silent=False,
                # period=[dt.strftime(refSt, '%Y-%m-%d'), dt.strftime(refEn, '%Y-%m-%d')],
                period=[refSt.isoformat().strip().split("T")[0], refEn.isoformat().strip().split("T")[0]],
                bbox="%s,%s,%s,%s" % (bbox[0], bbox[2], bbox[1], bbox[3]))
        except Exception as e:
            msg = 'failed to generate config file %s ' % e
            LOGGER.debug(msg)
            raise Exception(msg)

        LOGGER.debug("write_config took %s seconds.", time.time() - start_time)

        ##############
        # CASTf90 call
        ##############
        import subprocess
        import shlex

        start_time = time.time()  # measure call castf90
        response.update_status('Start CASTf90 call', 60)

        # -----------------------
        try:
            import ctypes
            # TODO: This lib is for linux
            mkl_rt = ctypes.CDLL('libmkl_rt.so')
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('Current number of threads: %s' % (nth))
            mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('NEW number of threads: %s' % (nth))
            # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
            environ['MKL_NUM_THREADS'] = str(nth)
            environ['OMP_NUM_THREADS'] = str(nth)
        except Exception as e:
            msg = 'Failed to set THREADS %s ' % e
            LOGGER.debug(msg)
        # -----------------------

        # ##### TEMPORAL WORKAROUND! With instaled hdf5-1.8.18 in anaconda ###############
        # ##### MUST be removed after castf90 recompiled with the latest hdf version
        # ##### NOT safe
        environ['HDF5_DISABLE_VERSION_CHECK'] = '1'
        # hdflib = os.path.expanduser("~") + '/anaconda/lib'
        # hdflib = os.getenv("HOME") + '/anaconda/lib'
        import pwd
        hdflib = pwd.getpwuid(getuid()).pw_dir + '/anaconda/lib'
        environ['LD_LIBRARY_PATH'] = hdflib
        # ################################################################################

        try:
            # response.update_status('execution of CASTf90', 50)
            cmd = 'analogue.out %s' % path.relpath(config_file)
            # system(cmd)
            args = shlex.split(cmd)
            output, error = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
            LOGGER.info('analogue.out info:\n %s ' % output)
            LOGGER.debug('analogue.out errors:\n %s ' % error)
            response.update_status('**** CASTf90 suceeded', 70)
        except Exception as e:
            msg = 'CASTf90 failed %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        LOGGER.debug("castf90 took %s seconds.", time.time() - start_time)

        # TODO: Add try - except for pdfs
        if plot == 'Yes':
            analogs_pdf = analogs.plot_analogs(configfile=config_file)
        else:
            analogs_pdf = 'dummy_plot.pdf'
            with open(analogs_pdf, 'a'): utime(analogs_pdf, None)

        response.update_status('preparing output', 80)

        response.outputs['analog_pdf'].file = analogs_pdf
        response.outputs['config'].file = config_file
        response.outputs['analogs'].file = output_file
        response.outputs['output_netcdf'].file = simulation
        response.outputs['target_netcdf'].file = archive

        if seacyc is True:
            response.outputs['base_netcdf'].file = seasoncyc_base
            response.outputs['sim_netcdf'].file = seasoncyc_sim
        else:
            # TODO: Still unclear how to overpass unknown number of outputs
            dummy_base = 'dummy_base.nc'
            dummy_sim = 'dummy_sim.nc'
            with open(dummy_base, 'a'): utime(dummy_base, None)
            with open(dummy_sim, 'a'): utime(dummy_sim, None)
            response.outputs['base_netcdf'].file = dummy_base
            response.outputs['sim_netcdf'].file = dummy_sim

        ########################
        # generate analog viewer
        ########################

        formated_analogs_file = analogs.reformat_analogs(output_file)
        # response.outputs['formated_analogs'].storage = FileStorage()
        response.outputs['formated_analogs'].file = formated_analogs_file
        LOGGER.info('analogs reformated')
        response.update_status('reformatted analog file', 90)

        viewer_html = analogs.render_viewer(
            # configfile=response.outputs['config'].get_url(),
            configfile=config_file,
            # datafile=response.outputs['formated_analogs'].get_url())
            datafile=formated_analogs_file)
        response.outputs['output'].file = viewer_html
        response.update_status('Successfully generated analogs viewer', 95)
        LOGGER.info('rendered pages: %s ', viewer_html)

        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        return response
Пример #11
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        response.update_status('execution started at : {}'.format(dt.now()), 5)

        process_start_time = time.time()  # measure process execution time ...
        start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        try:
            response.update_status('read input parameter : %s ' % dt.now(), 7)

            refSt = request.inputs['refSt'][0].data
            #refEn = request.inputs['refEn'][0].data
            refEn = dt.strptime(
                '%s%s%s' % (dt.now().year, dt.now().month, dt.now().day),
                '%Y%m%d')
            refEn = refEn - timedelta(days=3)

            dateSt = request.inputs['dateSt'][0].data
            #dateEn = request.inputs['dateEn'][0].data
            dateEn = dt.strptime(
                '%s%s%s' % (dt.now().year, dt.now().month, dt.now().day),
                '%Y%m%d')
            dateEn = dateEn - timedelta(days=3)

            seasonwin = request.inputs['seasonwin'][0].data
            nanalog = request.inputs['nanalog'][0].data

            bboxDef = '-80,50,20,70'  # in general format
            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or abs(float(bboxStr[1]) > 180)
                    or abs(float(bboxStr[2]) > 90)
                    or abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug(
                    'BBOX is out of the range, using default instead: %s ' %
                    (bboxStr))
                bboxStr = bboxStr.split(',')

            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            normalize = request.inputs['normalize'][0].data
            detrend = request.inputs['detrend'][0].data
            distance = request.inputs['dist'][0].data
            outformat = request.inputs['outformat'][0].data
            timewin = request.inputs['timewin'][0].data

            model_var = request.inputs['reanalyses'][0].data
            model, var = model_var.split('_')

            LOGGER.info('input parameters set')
            response.update_status('Read in and convert the arguments', 8)
        except Exception as e:
            msg = 'failed to read input prameter %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ######################################
        # convert types and set environment
        ######################################
        try:
            response.update_status('Preparing enviroment converting arguments',
                                   9)
            LOGGER.debug('date: %s %s %s %s ' %
                         (type(refSt), refEn, dateSt, dateSt))

            start = min(refSt, dateSt)
            end = max(refEn, dateEn)

            if normalize == 'None':
                seacyc = False
            else:
                seacyc = True

            if outformat == 'ascii':
                outformat = '.txt'
            elif outformat == 'netCDF':
                outformat = '.nc'
            else:
                LOGGER.exception('output format not valid')

        except Exception as e:
            msg = 'failed to set environment %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ###########################
        # set the environment
        ###########################

        response.update_status('fetching data from archive', 10)

        # We work only with NCEP
        getlevel = False
        if 'z' in var:
            level = var.strip('z')
        else:
            level = None

        ##########################################
        # fetch Data from original data archive
        ##########################################

        try:
            model_nc = rl(start=start.year,
                          end=end.year,
                          dataset=model,
                          variable=var,
                          getlevel=getlevel)
            LOGGER.info('reanalyses data fetched')
        except Exception:
            msg = 'failed to get reanalyses data'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('subsetting region of interest', 17)

        LOGGER.debug("start and end time: %s - %s" % (start, end))
        time_range = [start, end]

        # Checking memory and dataset size
        m_size = get_files_size(model_nc)
        memory_avail = psutil.virtual_memory().available
        thrs = 0.2  # 20%

        if (m_size >= thrs * memory_avail):
            ser_r = True
        else:
            ser_r = False

        LOGGER.debug('Available Memory: %s ' % (memory_avail))
        LOGGER.debug('Dataset size: %s ' % (m_size))
        LOGGER.debug('Threshold: %s ' % (thrs * memory_avail))
        LOGGER.debug('Serial or at once: %s ' % (ser_r))

        #        if ('20CRV2' in model) and ('z' in var):
        if ('z' in var):
            tmp_total = []
            origvar = get_variable(model_nc)

            for z in model_nc:
                tmp_n = 'tmp_%s' % (uuid.uuid1())
                b0 = call(resource=z,
                          variable=origvar,
                          level_range=[int(level), int(level)],
                          geom=bbox,
                          spatial_wrapping='wrap',
                          prefix='levdom_' + os.path.basename(z)[0:-3])
                tmp_total.append(b0)

            tmp_total = sorted(
                tmp_total,
                key=lambda i: os.path.splitext(os.path.basename(i))[0])
            inter_subset_tmp = call(resource=tmp_total,
                                    variable=origvar,
                                    time_range=time_range)

            # Clean
            for i in tmp_total:
                tbr = 'rm -f %s' % (i)
                os.system(tbr)

            # Create new variable
            ds = Dataset(inter_subset_tmp, mode='a')
            z_var = ds.variables.pop(origvar)
            dims = z_var.dimensions
            new_var = ds.createVariable('z%s' % level,
                                        z_var.dtype,
                                        dimensions=(dims[0], dims[2], dims[3]))
            new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
            # new_var.setncatts({k: z_var.getncattr(k) for k in z_var.ncattrs()})
            ds.close()
            model_subset_tmp = call(inter_subset_tmp, variable='z%s' % level)
        else:
            if ser_r:
                LOGGER.debug('Process reanalysis step-by-step')
                tmp_total = []
                for z in model_nc:
                    tmp_n = 'tmp_%s' % (uuid.uuid1())
                    b0 = call(resource=z,
                              variable=var,
                              geom=bbox,
                              spatial_wrapping='wrap',
                              prefix='Rdom_' + os.path.basename(z)[0:-3])
                    tmp_total.append(b0)
                tmp_total = sorted(
                    tmp_total,
                    key=lambda i: os.path.splitext(os.path.basename(i))[0])
                model_subset_tmp = call(resource=tmp_total,
                                        variable=var,
                                        time_range=time_range)

                # Clean
                for i in tmp_total:
                    tbr = 'rm -f %s' % (i)
                    os.system(tbr)
            else:
                LOGGER.debug('Using whole dataset at once')
                model_subset_tmp = call(
                    resource=model_nc,
                    variable=var,
                    geom=bbox,
                    spatial_wrapping='wrap',
                    time_range=time_range,
                )
        # Rest from 20CRV...
        model_subset = model_subset_tmp

        LOGGER.info('Dataset subset done: %s ', model_subset)

        response.update_status('dataset subsetted', 19)

        # BLOCK OF DETRENDING of model_subset !
        # Original model subset kept to further visualisaion if needed
        # Now is issue with SLP:
        # TODO 1 Keep trend as separate file
        # TODO 2 Think how to add options to plot abomalies AND original data...
        #        May be do archive and simulation = call.. over NOT detrended data and keep it as well
        # TODO 3 Check with faster smoother add removing trend of each grid

        if detrend == 'None':
            orig_model_subset = model_subset
        else:
            orig_model_subset = remove_mean_trend(model_subset, varname=var)

        # ======================================

        LOGGER.debug("get_input_subset_dataset took %s seconds.",
                     time.time() - start_time)
        response.update_status('**** Input data fetched', 20)

        ########################
        # input data preperation
        ########################
        response.update_status('Start preparing input data', 22)
        start_time = time.time()  # measure data preperation ...

        try:
            # Construct descriptive filenames for the three files
            # listed in config file
            # TODO check strftime for years <1900 (!)

            refDatesString = dt.strftime(
                refSt, '%Y-%m-%d') + "_" + dt.strftime(refEn, '%Y-%m-%d')
            simDatesString = dt.strftime(
                dateSt, '%Y-%m-%d') + "_" + dt.strftime(dateEn, '%Y-%m-%d')
            archiveNameString = "base_" + var + "_" + refDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                                % (bbox[0], bbox[2], bbox[1], bbox[3])
            simNameString = "sim_" + var + "_" + simDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                            % (bbox[0], bbox[2], bbox[1], bbox[3])
            archive = call(resource=model_subset,
                           time_range=[refSt, refEn],
                           prefix=archiveNameString)
            simulation = call(resource=model_subset,
                              time_range=[dateSt, dateEn],
                              prefix=simNameString)
            LOGGER.info('archive and simulation files generated: %s, %s' %
                        (archive, simulation))
        except Exception as e:
            msg = 'failed to prepare archive and simulation files %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        try:
            if seacyc is True:
                LOGGER.info('normalization function with method: %s ' %
                            normalize)
                seasoncyc_base, seasoncyc_sim = analogs.seacyc(
                    archive, simulation, method=normalize)
            else:
                seasoncyc_base = seasoncyc_sim = None
        except Exception as e:
            msg = 'failed to generate normalization files %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        output_file = 'output.txt'
        files = [
            os.path.abspath(archive),
            os.path.abspath(simulation), output_file
        ]
        LOGGER.debug("Data preperation took %s seconds.",
                     time.time() - start_time)

        ############################
        # generate the config file
        ############################
        config_file = analogs.get_configfile(
            files=files,
            seasoncyc_base=seasoncyc_base,
            seasoncyc_sim=seasoncyc_sim,
            base_id=model,
            sim_id=model,
            timewin=timewin,
            varname=var,
            seacyc=seacyc,
            cycsmooth=91,
            nanalog=nanalog,
            seasonwin=seasonwin,
            distfun=distance,
            outformat=outformat,
            calccor=True,
            silent=False,
            period=[
                dt.strftime(refSt, '%Y-%m-%d'),
                dt.strftime(refEn, '%Y-%m-%d')
            ],
            bbox="{0[0]},{0[2]},{0[1]},{0[3]}".format(bbox))
        response.update_status('generated config file', 25)
        #######################
        # CASTf90 call
        #######################
        start_time = time.time()  # measure call castf90

        #-----------------------
        try:
            import ctypes
            # TODO: This lib is for linux
            mkl_rt = ctypes.CDLL('libmkl_rt.so')
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('Current number of threads: %s' % (nth))
            mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('NEW number of threads: %s' % (nth))
            # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
            os.environ['MKL_NUM_THREADS'] = str(nth)
            os.environ['OMP_NUM_THREADS'] = str(nth)
        except Exception as e:
            msg = 'Failed to set THREADS %s ' % e
            LOGGER.debug(msg)
        #-----------------------

        # ##### TEMPORAL WORKAROUND! With instaled hdf5-1.8.18 in anaconda ###############
        # ##### MUST be removed after castf90 recompiled with the latest hdf version
        # ##### NOT safe
        os.environ['HDF5_DISABLE_VERSION_CHECK'] = '1'
        #hdflib = os.path.expanduser("~") + '/anaconda/lib'
        #hdflib = os.getenv("HOME") + '/anaconda/lib'
        import pwd
        hdflib = pwd.getpwuid(os.getuid()).pw_dir + '/anaconda/lib'
        os.environ['LD_LIBRARY_PATH'] = hdflib
        # ################################################################################

        response.update_status('Start CASTf90 call', 30)
        try:
            # response.update_status('execution of CASTf90', 50)
            cmd = ['analogue.out', config_file]
            LOGGER.debug("castf90 command: %s", cmd)
            output = subprocess.check_output(cmd, stderr=subprocess.STDOUT)
            LOGGER.info('analogue output:\n %s', output)
            response.update_status('**** CASTf90 suceeded', 40)
        except CalledProcessError as e:
            msg = 'CASTf90 failed:\n{0}'.format(e.output)
            LOGGER.exception(msg)
            raise Exception(msg)
        LOGGER.debug("castf90 took %s seconds.", time.time() - start_time)

        # --------------- R cont analogs calcs -----------------------------------

        #######################
        # call the R scripts
        #######################
        response.update_status(
            'Start calculation of the stats and Return Periods ', 50)
        import shlex
        # import subprocess
        from blackswan import config
        from blackswan.visualisation import pdfmerge
        from os.path import curdir, exists, join

        try:
            #rworkspace = curdir
            Rsrc = config.Rsrc_dir()
            Rfile = 'analogs_diags-prox.R'
            Rdatfile = 'analogs_RT.Rdat'
            probs_c = 0.7
            probs_n = 0.3

            args = [
                'Rscript',
                join(Rsrc, Rfile),
                '%s' % output_file,
                '%s' % probs_c,
                '%s' % probs_n,
                '%s' % Rdatfile
            ]

            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))
        except:
            msg = 'failed to build the R command'
            LOGGER.exception(msg)
            raise Exception(msg)
        try:
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.exception('R outlog errors:\n %s ' % error)
            if len(output) > 0:
                response.update_status('**** Return Periods with R suceeded',
                                       60)
            else:
                LOGGER.exception('NO! output returned from R call')
            analogs_pdf = pdfmerge(
                ['analogs_score-diags_new.pdf', 'analogs_RP-diags_new.pdf'])
        except:
            msg = 'ReturnPeriods in R'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('Calculation of Return Periods done ', 70)

        # --------------- END of R cont analogs calcs ----------------------------

        response.update_status('preparing output', 75)

        response.outputs['analog_pdf'].file = analogs_pdf

        response.outputs['config'].file = config_file
        response.outputs['analogs'].file = output_file
        response.outputs['output_netcdf'].file = simulation
        response.outputs['target_netcdf'].file = archive

        if seacyc is True:
            response.outputs['base_netcdf'].file = seasoncyc_base
            response.outputs['sim_netcdf'].file = seasoncyc_sim
        else:
            # TODO: Still unclear how to overpass unknown number of outputs
            dummy_base = 'dummy_base.nc'
            dummy_sim = 'dummy_sim.nc'
            with open(dummy_base, 'a'):
                os.utime(dummy_base, None)
            with open(dummy_sim, 'a'):
                os.utime(dummy_sim, None)
            response.outputs['base_netcdf'].file = dummy_base
            response.outputs['sim_netcdf'].file = dummy_sim

        ########################
        # generate analog viewer
        ########################

        formated_analogs_file = analogs.reformat_analogs(output_file)
        # response.outputs['formated_analogs'].storage = FileStorage()
        response.outputs['formated_analogs'].file = formated_analogs_file
        LOGGER.info('analogs reformated')
        response.update_status('reformatted analog file', 80)

        viewer_html = analogs.render_viewer(
            # configfile=response.outputs['config'].get_url(),
            configfile=config_file,
            # datafile=response.outputs['formated_analogs'].get_url())
            datafile=formated_analogs_file)
        response.outputs['output'].file = viewer_html
        response.update_status('Successfully generated analogs viewer', 90)
        LOGGER.info('rendered pages: %s ', viewer_html)

        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        return response
Пример #12
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        response.update_status('execution started at : {}'.format(dt.now()), 5)

        process_start_time = time.time()  # measure process execution time ...
        start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        # response.update_status('execution started at : %s ' % dt.now(), 5)
        # start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        try:
            response.update_status('read input parameter : %s ' % dt.now(), 10)
            resource = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))
            dateSt = request.inputs['dateSt'][0].data
            dateEn = request.inputs['dateEn'][0].data

            bboxDef = '-20,40,30,70'  # in general format
            # level = 500

            season = request.inputs['season'][0].data

            level = request.inputs['level'][0].data
            if (level == 500):
                dummylevel = 1000  # dummy workaround for cdo sellevel
            else:
                dummylevel = 500
            LOGGER.debug('LEVEL selected: %s hPa' % (level))

            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or abs(float(bboxStr[1]) > 180)
                    or abs(float(bboxStr[2]) > 90)
                    or abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug(
                    'BBOX is out of the range, using default instead: %s ' %
                    (bboxStr))
                bboxStr = bboxStr.split(',')

            # for i in bboxStr: bbox.append(int(i))
            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            distance = request.inputs['dist'][0].data
            method = request.inputs['method'][0].data

            LOGGER.info('input parameters set')
            response.update_status('Read in and convert the arguments', 20)
        except Exception as e:
            msg = 'failed to read input prameter %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        ######################################
        # convert types and set environment
        ######################################
        try:

            # not nesessary if fix ocgis_module.py
            dateSt = dt.combine(dateSt, dt_time(12, 0))
            dateEn = dt.combine(dateEn, dt_time(12, 0))

            # Check if 360_day calendar:
            try:
                if type(resource) is not list:
                    resource = [resource]

                modcal, calunits = get_calendar(resource[0])
                if '360_day' in modcal:
                    if dateSt.day == 31:
                        dateSt = dateSt.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' %
                                     (dateSt))
                    if dateEn.day == 31:
                        dateEn = dateEn.replace(day=30)
                        LOGGER.debug('Date has been changed for: %s' %
                                     (dateEn))
            except:
                LOGGER.debug('Could not detect calendar')

            start = dateSt
            end = dateEn
            time_range = [start, end]

            LOGGER.info('environment set')
        except Exception as e:
            msg = 'failed to set environment %s ' % e
            LOGGER.error(msg)
            raise Exception(msg)

        LOGGER.debug("init took %s seconds.", time.time() - start_time)
        response.update_status('Read in and convert the arguments', 30)

        ########################
        # input data preperation
        ########################

        # TODO: Check if files containing more than one dataset

        response.update_status('Start preparing input data', 40)
        start_time = time.time()  # mesure data preperation ...
        try:
            # TODO: Add selection of the level. maybe bellow in call(..., level_range=[...,...])

            if type(resource) == list:
                # resource.sort()
                resource = sorted(
                    resource, key=lambda i: path.splitext(path.basename(i))[0])
            else:
                resource = [resource]

            # ===============================================================
            # REMOVE resources which are out of interest from the list
            # (years > and < than requested for calculation)

            tmp_resource = []

            for re in resource:
                s, e = get_timerange(re)
                tmpSt = dt.strptime(s, '%Y%m%d')
                tmpEn = dt.strptime(e, '%Y%m%d')
                if ((tmpSt <= end) and (tmpEn >= start)):
                    tmp_resource.append(re)
                    LOGGER.debug('Selected file: %s ' % (re))
            resource = tmp_resource

            # Try to fix memory issue... (ocgis call for files like 20-30 gb... )
            # IF 4D - select pressure level before domain cut
            #
            # resource properties
            ds = Dataset(resource[0])
            variable = get_variable(resource[0])
            var = ds.variables[variable]
            dims = list(var.dimensions)
            dimlen = len(dims)

            try:
                model_id = ds.getncattr('model_id')
            except AttributeError:
                model_id = 'Unknown_model'

            LOGGER.debug('MODEL: %s ' % (model_id))

            lev_units = 'hPa'

            if (dimlen > 3):
                lev = ds.variables[dims[1]]
                # actually index [1] need to be detected... assuming zg(time, plev, lat, lon)
                lev_units = lev.units

                if (lev_units == 'Pa'):
                    level = level * 100
                    dummylevel = dummylevel * 100
                    # TODO: OR check the NAME and units of vertical level and find 200 , 300, or 500 mbar in it
                    # Not just level = level * 100.

            # Get Levels
            from cdo import Cdo
            cdo = Cdo(env=environ)

            lev_res = []
            if (dimlen > 3):
                for res_fn in resource:
                    tmp_f = 'lev_' + path.basename(res_fn)
                    try:
                        tmp_f = call(resource=res_fn,
                                     variable=variable,
                                     spatial_wrapping='wrap',
                                     level_range=[int(level),
                                                  int(level)],
                                     prefix=tmp_f[0:-3])
                    except:
                        comcdo = '%s,%s' % (level, dummylevel)
                        cdo.sellevel(comcdo, input=res_fn, output=tmp_f)
                    lev_res.append(tmp_f)
            else:
                lev_res = resource

            # ===============================================================
            # TODO: Before domain, Regrid to selected grid! (???) if no rean.
            # ================================================================

            # Get domain
            regr_res = []
            for res_fn in lev_res:
                tmp_f = 'dom_' + path.basename(res_fn)
                comcdo = '%s,%s,%s,%s' % (bbox[0], bbox[2], bbox[1], bbox[3])
                try:
                    tmp_f = call(resource=res_fn,
                                 geom=bbox,
                                 spatial_wrapping='wrap',
                                 prefix=tmp_f[0:-3])
                except:
                    cdo.sellonlatbox(comcdo, input=res_fn, output=tmp_f)
                regr_res.append(tmp_f)

            # ============================
            # Block to collect final data
            if (dimlen > 3):
                res_tmp_tmp = get_level(regr_res, level=level)
                variable = 'z%s' % level
                res_tmp = call(resource=res_tmp_tmp,
                               variable=variable,
                               time_range=time_range)
            else:
                res_tmp = call(resource=regr_res,
                               time_range=time_range,
                               spatial_wrapping='wrap')
            #######################################################################################

        except Exception as e:
            msg = 'failed to prepare archive and simulation files %s ' % e
            LOGGER.debug(msg)
            raise Exception(msg)
        LOGGER.debug("data preperation took %s seconds.",
                     time.time() - start_time)

        # -----------------------
        # try:
        #     import ctypes
        #     # TODO: This lib is for linux
        #     mkl_rt = ctypes.CDLL('libmkl_rt.so')
        #     nth = mkl_rt.mkl_get_max_threads()
        #     LOGGER.debug('Current number of threads: %s' % (nth))
        #     mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
        #     nth = mkl_rt.mkl_get_max_threads()
        #     LOGGER.debug('NEW number of threads: %s' % (nth))
        #     # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
        #     environ['MKL_NUM_THREADS'] = str(nth)
        #     environ['OMP_NUM_THREADS'] = str(nth)
        # except Exception as e:
        #     msg = 'Failed to set THREADS %s ' % e
        #     LOGGER.debug(msg)
        # -----------------------

        response.update_status('Start DIM calc', 50)

        # Calculation of Local Dimentsions ==================
        LOGGER.debug('Calculation of the distances using: %s metric' %
                     (distance))
        LOGGER.debug('Calculation of the dims with: %s' % (method))

        dim_filename = '%s.txt' % model_id
        tmp_dim_fn = '%s.txt' % uuid.uuid1()
        Rsrc = config.Rsrc_dir()

        if (method == 'Python'):
            try:
                l_dist, l_theta = localdims(resource=res_tmp,
                                            variable=variable,
                                            distance=str(distance))
                response.update_status('**** Dims with Python suceeded', 60)
            except:
                LOGGER.exception('NO! output returned from Python call')

        if (method == 'Python_wrap'):
            try:
                l_dist, l_theta = localdims_par(resource=res_tmp,
                                                variable=variable,
                                                distance=str(distance))
                response.update_status('**** Dims with Python suceeded', 60)
            except:
                LOGGER.exception('NO! output returned from Python call')

        if (method == 'R'):
            # from os.path import join
            Rfile = 'localdimension_persistence_fullD.R'
            args = [
                'Rscript',
                path.join(Rsrc, Rfile),
                '%s' % res_tmp,
                '%s' % variable,
                '%s' % tmp_dim_fn
            ]
            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))

            try:
                output, error = subprocess.Popen(
                    args, stdout=subprocess.PIPE,
                    stderr=subprocess.PIPE).communicate()
                LOGGER.info('R outlog info:\n %s ' % output)
                LOGGER.exception('R outlog errors:\n %s ' % error)
                if len(output) > 0:
                    response.update_status('**** Dims with R suceeded', 60)
                else:
                    LOGGER.exception('NO! output returned from R call')
                # HERE READ DATA FROM TEXT FILES
                R_resdim = loadtxt(fname=tmp_dim_fn, delimiter=',')
                l_theta = R_resdim[:, 0]
                l_dist = R_resdim[:, 1]
            except:
                msg = 'Dim with R'
                LOGGER.exception(msg)
                raise Exception(msg)

        if (method == 'R_wrap'):
            # from os.path import join
            Rfile = 'localdimension_persistence_serrD.R'
            args = [
                'Rscript',
                path.join(Rsrc, Rfile),
                '%s' % res_tmp,
                '%s' % variable,
                '%s' % tmp_dim_fn
            ]
            LOGGER.info('Rcall builded')
            LOGGER.debug('ARGS: %s' % (args))

            try:
                output, error = subprocess.Popen(
                    args, stdout=subprocess.PIPE,
                    stderr=subprocess.PIPE).communicate()
                LOGGER.info('R outlog info:\n %s ' % output)
                LOGGER.exception('R outlog errors:\n %s ' % error)
                if len(output) > 0:
                    response.update_status('**** Dims with R_wrap suceeded',
                                           60)
                else:
                    LOGGER.exception('NO! output returned from R call')
                # HERE READ DATA FROM TEXT FILES
                R_resdim = loadtxt(fname=tmp_dim_fn, delimiter=',')
                l_theta = R_resdim[:, 0]
                l_dist = R_resdim[:, 1]
            except:
                msg = 'Dim with R_wrap'
                LOGGER.exception(msg)
                raise Exception(msg)

        try:
            res_times = get_time(res_tmp)
        except:
            LOGGER.debug('Not standard calendar')
            res_times = analogs.get_time_nc(res_tmp)

        # plot 1
        ld_pdf = analogs.pdf_from_ld(x=l_dist, y=l_theta)
        #

        res_times = [
            res_times[i].isoformat().strip().split("T")[0].replace('-', '')
            for i in range(len(res_times))
        ]

        # concatenation of values
        concat_vals = column_stack([res_times, l_theta, l_dist])
        savetxt(dim_filename, concat_vals, fmt='%s', delimiter=',')

        # output season
        try:
            seas = _TIMEREGIONS_[season]['month']  # [12, 1, 2]
            LOGGER.info('Season to grep from TIMEREGIONS: %s ' % season)
            LOGGER.info('Season N to grep from TIMEREGIONS: %s ' % seas)
        except:
            LOGGER.info('No months in TIMEREGIONS, moving to months')
            try:
                seas = _MONTHS_[season]['month']  # [1] or [2] or ...
                LOGGER.info('Season to grep from MONTHS: %s ' % season)
                LOGGER.info('Season N to grep from MONTHS: %s ' % seas)
            except:
                seas = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
        ind = []

        # TODO: change concat_vals[i][0][4:6] to dt_obj.month !!!
        for i in range(len(res_times)):
            if (int(concat_vals[i][0][4:6]) in seas[:]):
                ind.append(i)
        sf = column_stack([concat_vals[i] for i in ind]).T
        seas_dim_filename = season + '_' + dim_filename
        savetxt(seas_dim_filename, sf, fmt='%s', delimiter=',')

        # -------------------------- plot with R ---------------
        R_plot_file = 'plot_csv.R'
        ld2_pdf = 'local_dims.pdf'
        ld2_seas_pdf = season + '_local_dims.pdf'

        args = [
            'Rscript',
            path.join(Rsrc, R_plot_file),
            '%s' % dim_filename,
            '%s' % ld2_pdf
        ]
        try:
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.exception('R outlog errors:\n %s ' % error)
        except:
            msg = 'Could not produce plot'
            LOGGER.exception(msg)
            # TODO: Here need produce empty pdf to pass to output

        args = [
            'Rscript',
            path.join(Rsrc, R_plot_file),
            '%s' % seas_dim_filename,
            '%s' % ld2_seas_pdf
        ]
        try:
            output, error = subprocess.Popen(
                args, stdout=subprocess.PIPE,
                stderr=subprocess.PIPE).communicate()
            LOGGER.info('R outlog info:\n %s ' % output)
            LOGGER.exception('R outlog errors:\n %s ' % error)
        except:
            msg = 'Could not produce plot'
            LOGGER.exception(msg)
            # TODO: Here need produce empty pdf(s) to pass to output
        #

        # ====================================================
        response.update_status('preparing output', 80)

        response.outputs['ldist'].file = dim_filename
        response.outputs['ldist_seas'].file = seas_dim_filename
        response.outputs['ld_pdf'].file = ld_pdf
        response.outputs['ld2_pdf'].file = ld2_pdf
        response.outputs['ld2_seas_pdf'].file = ld2_seas_pdf

        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        return response
Пример #13
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        LOGGER.info('Start process')
        response.update_status('execution started at : {}'.format(dt.now()), 5)

        process_start_time = time.time()  # measure process execution time ...
        start_time = time.time()  # measure init ...

        ################################
        # reading in the input arguments
        ################################

        try:
            response.update_status('read input parameter : %s ' % dt.now(), 6)

            refSt = request.inputs['refSt'][0].data
            refEn = request.inputs['refEn'][0].data
            dateSt = request.inputs['dateSt'][0].data
            dateEn = request.inputs['dateEn'][0].data

            seasonwin = request.inputs['seasonwin'][0].data
            nanalog = request.inputs['nanalog'][0].data

            bboxDef = '-20,40,30,70'  # in general format

            bbox = []
            bboxStr = request.inputs['BBox'][0].data
            LOGGER.debug('BBOX selected by user: %s ' % (bboxStr))
            bboxStr = bboxStr.split(',')

            # Checking for wrong cordinates and apply default if nesessary
            if (abs(float(bboxStr[0])) > 180 or
                    abs(float(bboxStr[1]) > 180) or
                    abs(float(bboxStr[2]) > 90) or
                    abs(float(bboxStr[3])) > 90):
                bboxStr = bboxDef  # request.inputs['BBox'].default  # .default doesn't work anymore!!!
                LOGGER.debug('BBOX is out of the range, using default instead: %s ' % (bboxStr))
                bboxStr = bboxStr.split(',')

            bbox.append(float(bboxStr[0]))
            bbox.append(float(bboxStr[2]))
            bbox.append(float(bboxStr[1]))
            bbox.append(float(bboxStr[3]))
            LOGGER.debug('BBOX for ocgis: %s ' % (bbox))
            LOGGER.debug('BBOX original: %s ' % (bboxStr))

            plot = request.inputs['plot'][0].data
            distance = request.inputs['dist'][0].data
            outformat = request.inputs['outformat'][0].data
            timewin = request.inputs['timewin'][0].data

            model_var = request.inputs['reanalyses'][0].data
            model, var = model_var.split('_')

            ref_model_var = request.inputs['Refreanalyses'][0].data
            ref_model, ref_var = ref_model_var.split('_')

            LOGGER.info('input parameters set')
            response.update_status('Read in and convert the arguments', 7)
        except Exception as e:
            msg = 'failed to read input prameter %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ######################################
        # convert types and set environment
        ######################################
        try:
            response.update_status('Preparing enviroment converting arguments', 8)
            LOGGER.debug('date: %s %s %s %s ' % (type(refSt), refEn, dateSt, dateSt))

            # normalize == 'None':
            seacyc = False

            if outformat == 'ascii':
                outformat = '.txt'
            elif outformat == 'netCDF':
                outformat = '.nc'
            else:
                LOGGER.exception('output format not valid')

        except Exception as e:
            msg = 'failed to set environment %s ' % e
            LOGGER.exception(msg)
            raise Exception(msg)

        ###########################
        # set the environment
        ###########################

        response.update_status('fetching data from archive', 9)

        getlevel = False
        if 'z' in var:
            level = var.strip('z')
        else:
            level = None

        ##########################################
        # fetch Data from original data archive
        ##########################################

        try:
            model_nc = rl(start=dateSt.year, end=dateEn.year,
                          dataset=model, variable=var,
                          getlevel=getlevel)

            ref_model_nc = rl(start=refSt.year, end=refEn.year,
                              dataset=ref_model, variable=ref_var,
                              getlevel=getlevel)

            LOGGER.info('reanalyses data fetched')
        except Exception:
            msg = 'failed to get reanalyses data'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.update_status('subsetting region of interest', 10)

        # Checking memory and dataset size
        model_size = get_files_size(model_nc)
        ref_model_size = get_files_size(ref_model_nc)

        m_size = max(model_size, ref_model_size)

        memory_avail = psutil.virtual_memory().available
        thrs = 0.2  # 20%

        if (m_size >= thrs * memory_avail):
            ser_r = True
        else:
            ser_r = False

        LOGGER.debug('Available Memory: %s ' % (memory_avail))
        LOGGER.debug('Dataset size: %s ' % (m_size))
        LOGGER.debug('Threshold: %s ' % (thrs * memory_avail))
        LOGGER.debug('Serial or at once: %s ' % (ser_r))

        # #####################################################
        # Construct descriptive filenames for the three files #
        # listed in config file                               #
        # TODO check strftime for years <1900 (!)             #
        # #####################################################

        # refDatesString = dt.strftime(refSt, '%Y-%m-%d') + "_" + dt.strftime(refEn, '%Y-%m-%d')
        # simDatesString = dt.strftime(dateSt, '%Y-%m-%d') + "_" + dt.strftime(dateEn, '%Y-%m-%d')

        # Fix < 1900 issue...
        refDatesString = refSt.isoformat().strip().split("T")[0] + "_" + refEn.isoformat().strip().split("T")[0]
        simDatesString = dateSt.isoformat().strip().split("T")[0] + "_" + dateEn.isoformat().strip().split("T")[0]

        archiveNameString = "base_" + var + "_" + refDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                            % (bbox[0], bbox[2], bbox[1], bbox[3])
        simNameString = "sim_" + var + "_" + simDatesString + '_%.1f_%.1f_%.1f_%.1f' \
                            % (bbox[0], bbox[2], bbox[1], bbox[3])

        if ('z' in var):
            # ------------------ NCEP -------------------
            tmp_total = []
            origvar = get_variable(model_nc)

            for z in model_nc:
                b0 = call(resource=z, variable=origvar, level_range=[int(level), int(level)], geom=bbox,
                spatial_wrapping='wrap', prefix='levdom_' + os.path.basename(z)[0:-3])
                tmp_total.append(b0)

            time_range = [dateSt, dateEn]

            tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
            inter_subset_tmp = call(resource=tmp_total, variable=origvar, time_range=time_range)

            # Clean
            for i in tmp_total:
                tbr = 'rm -f %s' % (i)
                os.system(tbr)

            # Create new variable
            ds = Dataset(inter_subset_tmp, mode='a')
            z_var = ds.variables.pop(origvar)
            dims = z_var.dimensions
            new_var = ds.createVariable('z%s' % level, z_var.dtype, dimensions=(dims[0], dims[2], dims[3]))
            new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
            ds.close()
            simulation = call(inter_subset_tmp, variable='z%s' % level, prefix=simNameString)

            # ------------------ 20CRV2c -------------------
            tmp_total = []
            origvar = get_variable(ref_model_nc)

            for z in ref_model_nc:

                tmp_n = 'tmp_%s' % (uuid.uuid1())
                # select level and regrid
                b0 = call(resource=z, variable=origvar, level_range=[int(level), int(level)],
                        spatial_wrapping='wrap', cdover='system',
                        regrid_destination=model_nc[0], regrid_options='bil', prefix=tmp_n)

                # select domain
                b01 = call(resource=b0, variable=origvar, geom=bbox, spatial_wrapping='wrap', prefix='levregr_' + os.path.basename(z)[0:-3])
                tbr = 'rm -f %s' % (b0)
                os.system(tbr)
                tbr = 'rm -f %s.nc' % (tmp_n)
                os.system(tbr)

                tmp_total.append(b01)

            time_range = [refSt, refEn]

            tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
            ref_inter_subset_tmp = call(resource=tmp_total, variable=origvar, time_range=time_range)

            # Clean
            for i in tmp_total:
                tbr = 'rm -f %s' % (i)
                os.system(tbr)

            # Create new variable
            ds = Dataset(ref_inter_subset_tmp, mode='a')
            z_var = ds.variables.pop(origvar)
            dims = z_var.dimensions
            new_var = ds.createVariable('z%s' % level, z_var.dtype, dimensions=(dims[0], dims[2], dims[3]))
            new_var[:, :, :] = squeeze(z_var[:, 0, :, :])
            ds.close()
            archive = call(ref_inter_subset_tmp, variable='z%s' % level, prefix=archiveNameString)

        else:
            if ser_r:
                LOGGER.debug('Process reanalysis step-by-step')
                # ----- NCEP ------
                tmp_total = []
                for z in model_nc:
                    b0 = call(resource=z, variable=var, geom=bbox, spatial_wrapping='wrap',
                            prefix='Rdom_' + os.path.basename(z)[0:-3])
                    tmp_total.append(b0)

                tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
                simulation = call(resource=tmp_total, variable=var, time_range=[dateSt, dateEn], prefix=simNameString)

                # Clean
                for i in tmp_total:
                    tbr = 'rm -f %s' % (i)
                    os.system(tbr)

                # ----- 20CRV2c ------
                tmp_n = 'tmp_%s' % (uuid.uuid1())
                tmp_total = []
                for z in ref_model_nc:
                    # regrid
                    b0 = call(resource=z, variable=ref_var, spatial_wrapping='wrap', cdover='system',
                            regrid_destination=model_nc[0], regrid_options='bil', prefix=tmp_n)
                    # select domain
                    b01 = call(resource=b0, variable=ref_var, geom=bbox, spatial_wrapping='wrap',
                             prefix='ref_Rdom_' + os.path.basename(z)[0:-3])

                    tbr = 'rm -f %s' % (b0)
                    os.system(tbr)
                    tbr = 'rm -f %s.nc' % (tmp_n)
                    os.system(tbr)

                    tmp_total.append(b01)

                tmp_total = sorted(tmp_total, key=lambda i: os.path.splitext(os.path.basename(i))[0])
                archive = call(resource=tmp_total, variable=ref_var, time_range=[refSt, refEn], prefix=archiveNameString)
                # Clean
                for i in tmp_total:
                    tbr = 'rm -f %s' % (i)
                    os.system(tbr)
            else:
                LOGGER.debug('Using whole dataset at once')

                simulation = call(resource=model_nc, variable=var,
                                        geom=bbox, spatial_wrapping='wrap', time_range=[dateSt, dateEn], prefix=simNameString)

                ref_inter_subset_tmp = call(resource=ref_model_nc, variable=ref_var, spatial_wrapping='wrap',
                                            cdover='system', regrid_destination=model_nc[0], regrid_options='bil')

                archive = call(resource=ref_inter_subset_tmp, geom=bbox, spatial_wrapping='wrap', time_range=[refSt, refEn], prefix=archiveNameString)

        response.update_status('datasets subsetted', 15)

        LOGGER.debug("get_input_subset_dataset took %s seconds.",
                     time.time() - start_time)
        response.update_status('**** Input data fetched', 20)

        ########################
        # input data preperation
        ########################
        response.update_status('Start preparing input data', 30)
        start_time = time.time()  # measure data preperation ...

        LOGGER.info('archive and simulation files generated: %s, %s'
                    % (archive, simulation))

        # Rename variable (TODO: For this specific process we know names: slp and prmsl...)
        try:
            if level is not None:
                out_var = 'z%s' % level
            else:
                var_archive = get_variable(archive)
                var_simulation = get_variable(simulation)
                if var_archive != var_simulation:
                    rename_variable(archive, oldname=var_archive, newname=var_simulation)
                    out_var = var_simulation
                    LOGGER.info('varname %s in netCDF renamed to %s' % (var_archive, var_simulation))
        except:
            msg = 'failed to rename variable in target files'
            LOGGER.exception(msg)
            raise Exception(msg)

        # seacyc is False:
        seasoncyc_base = seasoncyc_sim = None

        output_file = 'output.txt'
        files = [os.path.abspath(archive), os.path.abspath(simulation), output_file]
        LOGGER.debug("Data preperation took %s seconds.",
                     time.time() - start_time)

        ############################
        # generate the config file
        ############################
        config_file = analogs.get_configfile(
            files=files,
            seasoncyc_base=seasoncyc_base,
            seasoncyc_sim=seasoncyc_sim,
            base_id=ref_model,
            sim_id=model,
            timewin=timewin,
            varname=out_var,
            seacyc=seacyc,
            cycsmooth=91,
            nanalog=nanalog,
            seasonwin=seasonwin,
            distfun=distance,
            outformat=outformat,
            calccor=True,
            silent=False,
            # period=[dt.strftime(refSt, '%Y-%m-%d'), dt.strftime(refEn, '%Y-%m-%d')],
            period=[refSt.isoformat().strip().split("T")[0], refEn.isoformat().strip().split("T")[0]],
            bbox="{0[0]},{0[2]},{0[1]},{0[3]}".format(bbox))
        response.update_status('generated config file', 40)
        #######################
        # CASTf90 call
        #######################
        start_time = time.time()  # measure call castf90

        # -----------------------
        try:
            import ctypes
            # TODO: This lib is for linux
            mkl_rt = ctypes.CDLL('libmkl_rt.so')
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('Current number of threads: %s' % (nth))
            mkl_rt.mkl_set_num_threads(ctypes.byref(ctypes.c_int(64)))
            nth = mkl_rt.mkl_get_max_threads()
            LOGGER.debug('NEW number of threads: %s' % (nth))
            # TODO: Does it \/\/\/ work with default shell=False in subprocess... (?)
            os.environ['MKL_NUM_THREADS'] = str(nth)
            os.environ['OMP_NUM_THREADS'] = str(nth)
        except Exception as e:
            msg = 'Failed to set THREADS %s ' % e
            LOGGER.debug(msg)
        # -----------------------

        # ##### TEMPORAL WORKAROUND! With instaled hdf5-1.8.18 in anaconda ###############
        # ##### MUST be removed after castf90 recompiled with the latest hdf version
        # ##### NOT safe
        os.environ['HDF5_DISABLE_VERSION_CHECK'] = '1'
        # hdflib = os.path.expanduser("~") + '/anaconda/lib'
        # hdflib = os.getenv("HOME") + '/anaconda/lib'
        import pwd
        hdflib = pwd.getpwuid(os.getuid()).pw_dir + '/anaconda/lib'
        os.environ['LD_LIBRARY_PATH'] = hdflib
        # ################################################################################

        response.update_status('Start CASTf90 call', 50)
        try:
            # response.update_status('execution of CASTf90', 50)
            cmd = ['analogue.out', config_file]
            LOGGER.debug("castf90 command: %s", cmd)
            output = subprocess.check_output(cmd, stderr=subprocess.STDOUT)
            LOGGER.info('analogue output:\n %s', output)
            response.update_status('**** CASTf90 suceeded', 60)
        except CalledProcessError as e:
            msg = 'CASTf90 failed:\n{0}'.format(e.output)
            LOGGER.exception(msg)
            raise Exception(msg)
        LOGGER.debug("castf90 took %s seconds.", time.time() - start_time)

        # TODO: Add try - except for pdfs
        if plot == 'Yes':
            analogs_pdf = analogs.plot_analogs(configfile=config_file)
        else:
            analogs_pdf = 'dummy_plot.pdf'
            with open(analogs_pdf, 'a'): os.utime(analogs_pdf, None)

        response.update_status('preparing output', 70)

        response.outputs['analog_pdf'].file = analogs_pdf
        response.outputs['config'].file = config_file
        response.outputs['analogs'].file = output_file

        ########################
        # generate analog viewer
        ########################

        formated_analogs_file = analogs.reformat_analogs(output_file)
        # response.outputs['formated_analogs'].storage = FileStorage()
        response.outputs['formated_analogs'].file = formated_analogs_file
        LOGGER.info('analogs reformated')
        response.update_status('reformatted analog file', 80)

        viewer_html = analogs.render_viewer(
            # configfile=response.outputs['config'].get_url(),
            configfile=config_file,
            # datafile=response.outputs['formated_analogs'].get_url())
            datafile=formated_analogs_file)
        response.outputs['output'].file = viewer_html
        response.update_status('Successfully generated analogs viewer', 90)
        LOGGER.info('rendered pages: %s ', viewer_html)

        response.update_status('execution ended', 100)
        LOGGER.debug("total execution took %s seconds.",
                     time.time() - process_start_time)
        return response