Пример #1
0
    def addBlob(self):
        '''Creates the enemy blobs with random colors, starting points, sizes, and speeds'''

        # Width between 1 and 200 inclusive is chosen randomly
        width = random.randint(1, 200)
        # Height of enemy blob is always half the width
        height = width / 2

        # Blobs have a 50% chance to appear from the left
        if random.randint(0, 1) == 0:
            # Adds blob to canvas with random starting position from the left, with random width, height, color, and speed
            self.canvas.addItem(
                blob.Blob(self.canvas, self.player, self,
                          (-800, random.randrange(HEIGHT)), (width, height),
                          random.choice(colors), random.randint(2, 7)))
            # Adds the blob every 1500 milliseconds
            self.canvas.after(1500, self.addBlob)

        # Blobs have a 50% chance to appear from the right
        else:
            # Adds blob to canvas with random starting position from the right, with random width, height, color, and speed
            self.canvas.addItem(
                blob.Blob(self.canvas, self.player, self,
                          (805, random.randrange(HEIGHT)), (width, height),
                          random.choice(colors), random.randint(-7, -2)))
            # Adds the blob every 1500 milliseconds
            self.canvas.after(1500, self.addBlob)
Пример #2
0
    def find_blobs(self, minsize=0, maxsize=10000000):
      blobs = []
      contours, hyerarchy = cv2.findContours(self._data, cv2.cv.CV_RETR_TREE, cv2.cv.CV_CHAIN_APPROX_SIMPLE)
      for c in contours:
        area = cv2.contourArea(c)
        if area > minsize and area < maxsize:
	  if len(blobs) and area > blobs[0].area:
            blobs.insert(0, blob.Blob(c))
          else:  
	    blobs.append(blob.Blob(c))
          
      return blobs
Пример #3
0
    def content_from_string(repo, text):
        """
        Parse a content item and create the appropriate object

        ``repo``
            is the Repo

         ``text``
            is the single line containing the items data in `git ls-tree` format

        Returns
            ``git.Blob`` or ``git.Tree``
        """
        try:
            mode, typ, id, name = text.expandtabs(1).split(" ", 4)
        except:
            return None

        if typ == "tree":
            return Tree(repo, id=id, mode=mode, name=name)
        elif typ == "blob":
            return blob.Blob(repo, id=id, mode=mode, name=name)
        elif typ == "commit":
            return None
        else:
          raise(TypeError, "Invalid type: %s" % typ)
Пример #4
0
 def __init__(self, number_producers=1, number_consumers=50, **kwargs):
     super(WriteBlob, self).__init__(number_producers, number_consumers,
                                     **kwargs)
     self._blob = kwargs.get('blob', blob.Blob(Subspace(('bulk_blob', ))))
     self._clear = kwargs.get('clear', False)
     if self._clear:
         self._blob.delete(db)
Пример #5
0
    def content_from_string(repo, text, commit_context=None, path=''):
        """
        Parse a content item and create the appropriate object

        ``repo``
            is the Repo

         ``text``
            is the single line containing the items data in `git ls-tree` format

        Returns
            ``git.Blob`` or ``git.Tree``
        """
        try:
            mode, typ, id, name = text.expandtabs(1).split(" ", 3)
        except:
            return None

        if typ == "tree":
            return Tree(repo,
                        id=id,
                        mode=mode,
                        name=name,
                        commit_context=commit_context,
                        path='/'.join([path, name]))
        elif typ == "blob":
            return blob.Blob(repo, id=id, mode=mode, name=name)
        elif typ == "commit" and mode == '160000':
            return submodule.Submodule(repo,
                                       id=id,
                                       name=name,
                                       commit_context=commit_context,
                                       path='/'.join([path, name]))
        else:
            raise (TypeError, "Invalid type: %s" % typ)
Пример #6
0
    def find_blobs(self, minsize=0, maxsize=10000000):
      blobs = []
      image = contours = hyerarchy = None
      if "2.4" in cv2.__version__:
         contours, hyerarchy = cv2.findContours(self._data, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
      else:
        image, contours, hyerarchy = cv2.findContours(self._data, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

      for c in contours:
        area = cv2.contourArea(c)
        if area > minsize and area < maxsize:
	  if len(blobs) and area > blobs[0].area:
            blobs.insert(0, blob.Blob(c))
          else:  
	    blobs.append(blob.Blob(c))
          
      return blobs
Пример #7
0
 def _iter_from_data(self):
     """
     Reads the binary non-pretty printed representation of a tree and converts
     it into Blob, Tree or Commit objects.
     
     Note: This method was inspired by the parse_tree method in dulwich.
     
     Returns
         list(IndexObject, ...)
     """
     ord_zero = ord('0')
     data = self.data
     len_data = len(data)
     i = 0
     while i < len_data:
         mode = 0
         
         # read mode
         # Some git versions truncate the leading 0, some don't
         # The type will be extracted from the mode later
         while data[i] != ' ':
             # move existing mode integer up one level being 3 bits
             # and add the actual ordinal value of the character
             mode = (mode << 3) + (ord(data[i]) - ord_zero)
             i += 1
         # END while reading mode
         type_id = mode >> 12 
         
         # byte is space now, skip it
         i += 1
         
         # parse name, it is NULL separated
         
         ns = i
         while data[i] != '\0':
             i += 1
         # END while not reached NULL
         name = data[ns:i]
         path = join_path(self.path, name)
         
         # byte is NULL, get next 20
         i += 1
         sha = data[i:i+20]
         i = i + 20
         
         hexsha = sha_to_hex(sha)
         if type_id == self.blob_id or type_id == self.symlink_id:
             yield blob.Blob(self.repo, hexsha, mode, path)
         elif type_id == self.tree_id:
             yield Tree(self.repo, hexsha, mode, path)
         elif type_id == self.commit_id:
             # submodules 
             yield None
         else:
             raise TypeError( "Unknown type found in tree data %i for path '%s'" % (type_id, path))
Пример #8
0
    def create_blob(self, x, y):

        newBlob = blob.Blob()

        newBlob.level = self
        newBlob.player = self.player

        newBlob.rect.x = x
        newBlob.rect.y = y

        self.impList.add(newBlob)
Пример #9
0
import paho.mqtt.client as mqtt
import blob
import json
import uuid

SERVER = "infmqtt.westeurope.azurecontainer.io"
TOPIC = "smartbin"

blob = blob.Blob(TOPIC)


def send_to_blob(data):
    print("Send to blob: " + data)
    blob.write_data_to_blob(data)

def on_connect(client, userdata, flags, rc):
    print("Connected with result code " + str(rc))
    client.subscribe(TOPIC)

def on_message(client, userdata, msg):
    b = str(msg.payload.decode("utf-8"))
    print(msg.topic + " " + b)
    send_to_blob(b)


# Main
if __name__ == '__main__':
    try:
        client = mqtt.Client()
        client.on_connect = on_connect
        client.on_message = on_message
Пример #10
0
import numpy as np
import cv2 as cv
import blob as b
import csv as cs
import math as m

arrytemp1 = cv.imread("img/hw3_leaf_training_1.jpg", 0)
arrytemp2 = cv.imread("img/hw3_leaf_training_2.jpg", 0)
arrytemp3 = cv.imread("img/hw3_leaf_training_3.jpg", 0)
arrytemp4 = cv.imread("img/hw3_leaf_training_4.jpg", 0)
arrytemp5 = cv.imread("img/hw3_leaf_training_5.jpg", 0)
assignment = cv.imread("img/hw3_leaf_testing_1.jpg", 0)

obj1 = b.Blob()
obj2 = b.Blob()
obj3 = b.Blob()
obj4 = b.Blob()
obj5 = b.Blob()

data1 = obj1.extractfeature(arrytemp1)
data2 = obj2.extractfeature(arrytemp2)
data3 = obj3.extractfeature(arrytemp3)
data4 = obj4.extractfeature(arrytemp4)
data5 = obj4.extractfeature(arrytemp5)

array1 = obj1.features()
array2 = obj2.features()
array3 = obj3.features()
array4 = obj4.features()
array5 = obj5.features()
Пример #11
0
    height = bg.shape[0]

    rectangles = {"1": list(), "2": list(), "3": list()}

    filenames = [
        "generated_sample_" + counter + "_" + str(x) for x in range(1, 4)
    ]
    filepaths = list(map(lambda name: os.path.join(generated, name),
                         filenames))

    new_img = [bg, bg, bg]

    for k in range(blob_no):
        for l in range(3):
            if l == 0:
                b = blob.Blob([height, width])
            else:
                b = b.genarete_rotated()
            texture_b, blob_pos = blob.blob_texture(
                texture, b, pos=None if l == 0 else blob_pos)
            new_img[l], rectangle, pos = blob.join_blob(
                new_img[l], texture_b, b, prev_pos=None if l == 0 else pos)
            if isinstance(rectangle, list):
                rectangles[str(l + 1)].append(rectangle)
        texture = mpimg.imread(pair_list[random.randint(-i, 0)][1])
        if texture.shape[0] > 1000 or texture.shape[1] > 1500:
            texture = cv2.resize(texture, (640, 480))

    for l in range(3):
        mpimg.imsave(filepaths[l] + '.jpg', new_img[l])
        to_txt(filepaths[l], rectangles[str(l + 1)], new_img[l].shape)
Пример #12
0
parser.add_argument(
    '--root',
    nargs=1,
    help=
    "Root directory of the project. Use absolute path, or relative path to XML file."
)
parser.add_argument('--exclude',
                    nargs='*',
                    help="Names of XML entries to ignore when parsing.")
parser.add_argument(
    '--timestamp',
    help="Sets the timestanp to be used when naming the output.")
args = parser.parse_args()

if args.info is not None:
    b = blob.Blob()
    b.load_from_file(args.info[0])
    b.disp()

if args.unpack is not None:
    blob_path = args.unpack[0]
    blob_output_dir = args.unpack[1]

    if not os.path.exists(blob_output_dir):
        os.makedirs(blob_output_dir)

    b = blob.Blob()
    b.load_from_file(blob_path)
    b.unpack(os.path.basename(blob_path), blob_output_dir)

if args.pack is not None:
Пример #13
0
#!/usr/bin/env python
import paho.mqtt.client as mqtt

import blob
import cosmos
import json
import uuid

SERVER = "infmqtt.westeurope.azurecontainer.io"

blob = blob.Blob('devices', '.\Data')

cosmos_client = cosmos.create_cosmos_client()


def send_to_blob(data):
    print("Send to blob : " + data)
    blob.write_data_to_blob(data)


def send_to_cosmos(data):
    json_d = json.loads(data)
    print("Send to cosmos : " + json_d)
    cosmos.DocumentManagement.CreateDocument(cosmos_client, json_d)


def on_connect(client, userdata, flags, rc):
    print("Connected with result code " + str(rc))
    client.subscribe("iotro/mt/devices")

Пример #14
0
import random

#init pygame, view constants
init()
mixer.init()
MU            = 100.0
viewportSize  = (800, 600)
screen        = display.set_mode((viewportSize[0], viewportSize[1]))
cenaBoost     = None
c             = False

#init map
myMap = map.Map(100.0,100.0)

#init myBlob
myBlob   = blob.Blob([3.0,3.0])
myMap.addBlob(myBlob)
#init other blobs
blobs = [];

blobs.append(myBlob)
blobs.append(blob.Blob([6.31,3.51], 0.1))
blobs.append(blob.Blob([5.26,3.41], 0.1))
blobs.append(blob.Blob([3.0,7.5], 0.1))
blobs.append(blob.Blob([2.0,3.5], 0.1))
myMap.addBlobs(blobs)

#init resources
rf = ResourceFactory(myMap, 2000)
rf.createInitialResources()
Пример #15
0
# importing training images
training_imgs = []
training_dir = './train'
img_paths = os.listdir(training_dir)
for img_path in img_paths:
    t = cv.imread(training_dir + '/' + img_path, 0)
    training_imgs.append(t)

# importing testing image
test = cv.imread("test/test.png", 0)

# extracting features
features = []
for img in training_imgs:
    # creating class objects
    obj = b.Blob()
    # extracting features from training images
    obj.extractfeature(img)
    # function returning the array of features it extracted
    f = obj.features()
    features.append(f)

# writing features in csv, so that we do not need to train again
csvinputdata = features
with open('features.csv', 'w') as csvfile:
    writer = cs.writer(csvfile)
    writer.writerows(csvinputdata)
csvfile.close()


def add_column_in_csv(input_file, output_file, transform_row):