def test1():
    mat_contents = sio.loadmat(pathdat + 'dict_pca_2fa_2freq.mat')
    #dict_pca
    coeff = np.array(mat_contents["coeff"].astype(np.float32))

    par = mat_contents["par"]

    batch_size = 800
    Nk = par[0]['irfreq'][0][0][0]  #892#far.shape[0]#par.irfreq#
    Ndiv = coeff.shape[1]  #par[0]['ndiv'][0][0][0]#16
    Nscan = 3
    orig_Ndiv = coeff.shape[0] // Nscan
    npar = 8  ##
    model = tf_wrap.tf_model_top([None, Ndiv], [None, npar],
                                 tf_prediction_func,
                                 tf_optimize_func,
                                 tf_error_func,
                                 arg=0.5)
    #model.restore(pathdat + 'test_model_save_2fa_2freq')

    fa1 = 45.0  #par[0]['fa1'][0][0][0].astype(np.float32)#35#30 #deg
    fa2 = 30.0  #par[0]['fa2'][0][0][0].astype(np.float32)
    tr = par[0]['tr'][0][0][0].astype(np.float32)  #3.932#4.337 #ms
    ti = par[0]['ti'][0][0][0].astype(np.float32)  #11.0 #ms
    te = par[0]['te'][0][0][0].astype(np.float32)  #1.5 #ms

    far, trr, ter = simut.rftr_const(Nk, 1.0, tr, te)

    M0 = simut.def_M0()

    #run tensorflow on cpu, count of gpu = 0
    config = tf.ConfigProto()  #(device_count = {'GPU': 0})
    #allow tensorflow release gpu memory
    config.gpu_options.allow_growth = True
    t1t2_group = np.zeros((4, 2), dtype=np.float64)
    t1t2_group[0, 0] = 600.0 / 5000.0  #600     #0.12
    t1t2_group[0, 1] = 40.0 / 500.0  #40     #0.08
    t1t2_group[1, 0] = 1000.0 / 5000.0  #1000   #0.2
    t1t2_group[1, 1] = 80.0 / 500.0  #80      #0.16
    t1t2_group[2, 0] = 3000.0 / 5000.0  #3000  #0.6
    t1t2_group[2, 1] = 200.0 / 500.0  #200     #0.4
    t1t2_group[3, 0] = 0.0 / 5000.0
    t1t2_group[3, 1] = 0.0 / 500.0

    for i in range(1000000):
        batch_ys = np.random.uniform(0, 1,
                                     (batch_size, npar)).astype(np.float64)
        batch_ys[:, 2] = np.random.uniform(0, 1.0 / tr, (batch_size)).astype(
            np.float64)  #np.zeros(batch_size)#

        batch_ys_tmp = np.random.uniform(0, 4, (batch_size))

        for k in range(batch_size):
            if batch_ys_tmp[k] <= 4 and batch_ys_tmp[k] > 3:
                batch_ys[k, 0] = t1t2_group[0, 0] + np.random.uniform(
                    -0.05, 0.025)  #0.07 to 0.145
                batch_ys[k, 1] = t1t2_group[0, 1] + np.random.uniform(
                    -0.05, 0.025)  #0.04 to 0.105
                batch_ys[k, 4] = 1.0
                batch_ys[k, 5] = 0.0
                batch_ys[k, 6] = 0.0
            elif batch_ys_tmp[k] <= 3 and batch_ys_tmp[k] > 2:
                batch_ys[k, 0] = t1t2_group[1, 0] + np.random.uniform(
                    -0.035, 0.035)  #-0.035,0.035  #0.145 to 0.255
                batch_ys[k, 1] = t1t2_group[1, 1] + np.random.uniform(
                    -0.035, 0.035)  #0.105 to 0.215
                batch_ys[k, 4] = 0.0
                batch_ys[k, 5] = 1.0
                batch_ys[k, 6] = 0.0
            elif batch_ys_tmp[k] <= 2 and batch_ys_tmp[k] > 1:
                batch_ys[k, 0] = t1t2_group[2, 0] + np.random.uniform(
                    -0.15, 0.25)  #-0.15,0.25        #0.45  to 0.85
                batch_ys[k, 1] = t1t2_group[2, 1] + np.random.uniform(
                    -0.15, 0.25)  #0.55  to 0.65
                batch_ys[k, 4] = 0.0
                batch_ys[k, 5] = 0.0
                batch_ys[k, 6] = 1.0
            else:
                batch_ys[k, 0] = t1t2_group[3,
                                            0]  #+ np.random.uniform(-0.0,0.02)
                batch_ys[k, 1] = t1t2_group[3,
                                            1]  #+ np.random.uniform(-0.0,0.08)
                batch_ys[k, 4] = 0.0
                batch_ys[k, 5] = 0.0
                batch_ys[k, 6] = 0.0

        T1r, T2r, dfr, PDr = ssmrf.set_par(batch_ys[..., 0:4])
        b1r = 2.0 * batch_ys[..., 7] + 0.5
        batch_xs_c1 = ssmrf.bloch_sim_batch_cuda3(batch_size, 100, Nk, PDr,
                                                  T1r, T2r, dfr, b1r, M0, trr,
                                                  ter, fa1 * far, ti)
        batch_xs_c2 = ssmrf.bloch_sim_batch_cuda3(batch_size, 100, Nk, PDr,
                                                  T1r, T2r, dfr, b1r, M0, trr,
                                                  ter, fa2 * far, ti)
        #batch_xs_c3         = ssmrf.bloch_sim_batch_cuda2( batch_size, 100, Nk, PDr, T1r, T2r, dfr, M0, trr, ter, np.absolute(fa2*far), ti )
        batch_xs_c3 = ssmrf.bloch_sim_batch_cuda3(batch_size, 100, Nk, PDr,
                                                  T1r, T2r, dfr + 107.0, b1r,
                                                  M0, trr, ter, fa2 * far, ti)

        #ut.plot(np.absolute(batch_xs_c[0,:]))
        batch_xs = np.zeros((batch_size, Nscan * orig_Ndiv),
                            dtype=batch_xs_c1.dtype)
        if orig_Ndiv is not Nk:
            batch_xs[:, 0:orig_Ndiv] = (
                simut.average_dict(batch_xs_c1, orig_Ndiv)
            )  #(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff))
            batch_xs[:, orig_Ndiv:2 * orig_Ndiv] = (
                simut.average_dict(batch_xs_c2, orig_Ndiv)
            )  #(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff))
            batch_xs[:, 2 * orig_Ndiv:3 * orig_Ndiv] = (
                simut.average_dict(batch_xs_c3, orig_Ndiv)
            )  #(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff))

        batch_xs = batch_xs + np.random.ranf(1)[0] * np.random.uniform(
            -0.002, 0.002, (batch_xs.shape))
        batch_xs = np.absolute(batch_xs)

        if 1:
            batch_xs = np.dot(batch_xs, coeff)

        else:
            batch_xs = batch_xs

        for dd in range(batch_xs.shape[0]):
            tc1 = batch_xs[dd, :]

            normtc1 = np.linalg.norm(tc1)

            if normtc1 > 0.01:
                batch_xs[dd, :] = tc1
            else:
                batch_ys[dd, :] = np.zeros([1, npar])
        batch_xs = batch_xs / np.ndarray.max(batch_xs.flatten())

        model.test(batch_xs, batch_ys)
        model.train(batch_xs, batch_ys)

        if i % 100 == 0:
            prey = model.prediction(batch_xs, np.zeros(batch_ys.shape))
            for nn in range(npar):
                ut.plot(prey[..., nn],
                        batch_ys[..., nn],
                        line_type='.',
                        pause_close=1)
            model.save(pathdat + 'test_model_save_b1_2fa_2freq')
Пример #2
0
def test1():
    mat_contents = sio.loadmat(pathdat + 'dict_pca.mat')
    #dict_pca
    #dictall       = np.array(mat_contents["avedictall"].astype(np.float32))
    #label         = np.array(mat_contents["dict_label"].astype(np.float32))
    coeff = np.array(mat_contents["coeff"].astype(np.float32))
    #cn_orders     = np.array(mat_contents["cn_orders"].astype(np.float32))
    par = mat_contents["par"]

    batch_size = 800
    Nk = par[0]['irfreq'][0][0][0]  #892#far.shape[0]#par.irfreq#
    Ndiv = coeff.shape[1]  #par[0]['ndiv'][0][0][0]#16
    orig_Ndiv = coeff.shape[0]
    npar = 4
    model = tf_wrap.tf_model_top([None, Ndiv], [None, npar],
                                 tf_prediction_func,
                                 tf_optimize_func,
                                 tf_error_func,
                                 arg=0.5)

    fa = par[0]['fa'][0][0][0].astype(np.float32)  #35#30 #deg
    tr = par[0]['tr'][0][0][0].astype(np.float32)  #3.932#4.337 #ms
    ti = par[0]['ti'][0][0][0].astype(np.float32)  #11.0 #ms
    #print(fa)
    #print(tr)
    #print(ti)
    #print(Nk)
    #print(Ndiv)

    far, trr = simut.rftr_const(Nk, fa, tr)
    M0 = simut.def_M0()

    #run tensorflow on cpu, count of gpu = 0
    config = tf.ConfigProto()  #(device_count = {'GPU': 0})
    #allow tensorflow release gpu memory
    config.gpu_options.allow_growth = True

    for i in range(1000000):
        batch_ys = np.random.uniform(0, 1, (batch_size, 4)).astype(np.float64)
        #batch_ys[:,0]      = batch_ys[:,0] + 1.0*batch_ys[:,1]/10.0
        #batch_ys[:,0]      = np.random.uniform(0.07,1.0,(batch_size)).astype(np.float64)
        #batch_ys[:,1]      = np.random.uniform(0.0,0.2,(batch_size)).astype(np.float64)
        batch_ys[:, 2] = np.random.uniform(0, 1.0 / tr,
                                           (batch_size)).astype(np.float64)
        #batch_ys[:,2]      = np.zeros(batch_size)
        #batch_ys[:,3]      = np.ones(batch_size)#np.random.uniform(0.4,1,(batch_size)).astype(np.float64)#

        #batch_ys[:,0] = np.round(batch_ys[:,0]*20)/20
        #batch_ys[:,1] = np.round(batch_ys[:,1]*20)/20
        #batch_ys[:,2] = np.round(batch_ys[:,2]*20)/20
        #batch_ys[:,3] = np.round(batch_ys[:,3]*5)/5
        #batch_ys[:,3] = np.round(batch_ys[:,3]*5)/5
        # intial seq simulation with t1t2b0 values
        #seq_data = ssad.irssfp_arrayin_data( batch_size, Nk ).set( batch_ys )
        T1r, T2r, dfr, PDr = ssmrf.set_par(batch_ys)
        batch_xs_c = ssmrf.bloch_sim_batch_cuda(batch_size, 100, Nk, PDr, T1r,
                                                T2r, dfr, M0, trr, far, ti)

        #ut.plot(np.absolute(batch_xs_c[0,:]))
        if orig_Ndiv is not Nk:
            batch_xs = np.absolute(
                simut.average_dict(batch_xs_c, orig_Ndiv)
            )  #(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff))
            #batch_xs  = np.absolute(simut.average_dict_cnorders(batch_xs_c, cn_orders)) #np.absolute(np.dot(batch_xs_c, cn_orders))
        else:
            batch_xs = np.absolute(batch_xs_c)

        #ut.plot(np.absolute(batch_xs[0,:]))
        batch_xt = batch_xs
        batch_xs = batch_xs + np.random.ranf(1)[0] * np.random.uniform(
            -0.1, 0.1, (batch_xs.shape))

        #batch_xs = batch_xs/np.ndarray.max(batch_xs.flatten())
        if 1:
            batch_xs = np.dot(batch_xs, coeff)
            batch_xt = np.dot(batch_xt, coeff)
        else:
            batch_xs = batch_xs
            batch_xt = batch_xs
        #batch_ys[:,3]      = np.zeros(batch_size)
        for dd in range(batch_xs.shape[0]):
            tc1 = batch_xs[dd, :]  #- np.mean(imall[i,:])
            tc2 = batch_xt[dd, :]
            normtc1 = np.linalg.norm(tc1)
            normtc2 = np.linalg.norm(tc2)
            if normtc2 > 0.1:  #and batch_ys[dd,0]*5000 > 3*500*batch_ys[dd,1] and batch_ys[dd,0]*5000 < 20*500*batch_ys[dd,1]
                batch_xs[dd, :] = tc1  #/normtc1
                batch_xt[dd, :] = tc2  #/normtc2
            else:
                #        batch_xs[dd,:] = np.zeros([1,Ndiv])
                #        batch_xt[dd,:] = np.zeros([1,Ndiv])
                batch_ys[dd, :] = np.zeros([1, npar])

        batch_xs = batch_xs / np.ndarray.max(batch_xs.flatten())
        batch_xt = batch_xt / np.ndarray.max(batch_xt.flatten())
        #for kk in range(batch_xs.shape[1]):
        #    batch_xs [:,kk] = (batch_xs[:,kk])/np.std(batch_xs[:,kk] )#- np.mean(batch_xs[:,kk])
        #    batch_xt [:,kk] = (batch_xt[:,kk])/np.std(batch_xt[:,kk] )#- np.mean(batch_xt[:,kk])

        #ut.plot(np.real(batch_xs[0,:]),pause_close = 1)

        #batch_ys[:,3]      = np.ones(batch_size) * np.random.ranf(1)[0]
        #batch_xs = batch_xs *  batch_ys[0,3] #* np.random.ranf(1)[0]#
        model.test(batch_xs, batch_ys)
        model.train(batch_xt, batch_ys)
        model.train(batch_xs, batch_ys)

        if i % 100 == 0:
            prey = model.prediction(batch_xs, np.zeros(batch_ys.shape))
            ut.plot(prey[..., 0],
                    batch_ys[..., 0],
                    line_type='.',
                    pause_close=1)
            ut.plot(prey[..., 1],
                    batch_ys[..., 1],
                    line_type='.',
                    pause_close=1)
            ut.plot(prey[..., 2],
                    batch_ys[..., 2],
                    line_type='.',
                    pause_close=1)
            ut.plot(prey[..., 3],
                    batch_ys[..., 3],
                    line_type='.',
                    pause_close=1)
            model.save(pathdat + 'test_model_save')
Пример #3
0
def test1():
    mat_contents  = sio.loadmat(pathdat+'dict_pca.mat');#dict_pca
    #dictall       = np.array(mat_contents["avedictall"].astype(np.float32))
    #label         = np.array(mat_contents["dict_label"].astype(np.float32))
    coeff         = np.array(mat_contents["coeff"].astype(np.float32))
    #cn_orders     = np.array(mat_contents["cn_orders"].astype(np.float32))
    par           = mat_contents["par"]

    batch_size = 800
    Nk         = par[0]['irfreq'][0][0][0]#892#far.shape[0]#par.irfreq#
    Ndiv       = coeff.shape[1]#par[0]['ndiv'][0][0][0]#16
    orig_Ndiv  = coeff.shape[0] 
    npar       = 7
    model = tf_wrap.tf_model_top([None,  Ndiv], [None,  npar], tf_prediction_func, tf_optimize_func, tf_error_func, arg = 0.5)


    fa         = par[0]['fa'][0][0][0].astype(np.float32)#35#30 #deg
    tr         = par[0]['tr'][0][0][0].astype(np.float32)#3.932#4.337 #ms
    ti         = par[0]['ti'][0][0][0].astype(np.float32)#11.0 #ms
    te         = 1.5 #ms
    #print(fa)
    #print(tr)
    #print(ti)
    #print(Nk)
    #print(Ndiv)

    far, trr,ter   = simut.rftr_const(Nk, fa, tr, te)
    M0         = simut.def_M0()

    #run tensorflow on cpu, count of gpu = 0
    config     = tf.ConfigProto()#(device_count = {'GPU': 0})
    #allow tensorflow release gpu memory
    config.gpu_options.allow_growth=True
    t1t2_group = np.zeros((4, 2),dtype = np.float64)
    t1t2_group[0,0] = 600.0/5000.0
    t1t2_group[0,1] = 40.0/500.0
    t1t2_group[1,0] = 1000.0/5000.0
    t1t2_group[1,1] = 80.0/500.0     
    t1t2_group[2,0] = 3000.0/5000.0
    t1t2_group[2,1] = 200.0/500.0 
    t1t2_group[3,0] = 0.0/5000.0
    t1t2_group[3,1] = 0.0/500.0 

    for i in range(1000000):
        batch_ys           = np.random.uniform(0,1,(batch_size,npar)).astype(np.float64)
        batch_ys[:,2]      = np.zeros(batch_size)#np.random.uniform(0,1.0/tr,(batch_size)).astype(np.float64)
        batch_ys_tmp       = np.random.uniform(0,4,(batch_size))

        for k in range(batch_size):
            if batch_ys_tmp[k] <= 4 and batch_ys_tmp[k] > 3:
                batch_ys[k,0] = t1t2_group[0,0] + np.random.uniform(-0.05,0.025)
                batch_ys[k,1] = t1t2_group[0,1] + np.random.uniform(-0.05,0.025)
                batch_ys[k,4] = 1.0
                batch_ys[k,5] = 0.0
                batch_ys[k,6] = 0.0
            elif batch_ys_tmp[k] <= 3 and batch_ys_tmp[k] > 2:
                batch_ys[k,0] = t1t2_group[1,0] + np.random.uniform(-0.025,0.025)
                batch_ys[k,1] = t1t2_group[1,1] + np.random.uniform(-0.025,0.025)   
                batch_ys[k,4] = 0.0
                batch_ys[k,5] = 1.0
                batch_ys[k,6] = 0.0                            
            elif batch_ys_tmp[k] <= 2 and batch_ys_tmp[k] > 1:
                batch_ys[k,0] = t1t2_group[2,0] + np.random.uniform(-0.15,0.25)
                batch_ys[k,1] = t1t2_group[2,1] + np.random.uniform(-0.15,0.25) 
                batch_ys[k,4] = 0.0
                batch_ys[k,5] = 0.0
                batch_ys[k,6] = 1.0                             
            else: 
                batch_ys[k,0] = t1t2_group[3,0]
                batch_ys[k,1] = t1t2_group[3,1] 
                batch_ys[k,4] = 0.0
                batch_ys[k,5] = 0.0
                batch_ys[k,6] = 0.0                              


        T1r, T2r, dfr, PDr = ssmrf.set_par(batch_ys[...,0:4])
        batch_xs_c         = ssmrf.bloch_sim_batch_cuda2( batch_size, 100, Nk, PDr, T1r, T2r, dfr, M0, trr, ter, far, ti )


        #ut.plot(np.absolute(batch_xs_c[0,:]))   
        if orig_Ndiv is not Nk:
            batch_xs = np.absolute(simut.average_dict(batch_xs_c, orig_Ndiv))#(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff)) 
        else:
            batch_xs = np.absolute(batch_xs_c)


        #ut.plot(np.absolute(batch_xs[0,:]))  
        #batch_xt = batch_xs
        batch_xs = batch_xs + np.random.ranf(1)[0]*np.random.uniform(-0.1,0.1,(batch_xs.shape))

        #batch_xs = batch_xs/np.ndarray.max(batch_xs.flatten())
        if 1:
            batch_xs = np.dot(batch_xs, coeff)
            #batch_xt = np.dot(batch_xt, coeff)
        else:
            batch_xs = batch_xs
            #batch_xt = batch_xs
        for dd in range(batch_xs.shape[0]):
            tc1 = batch_xs[dd,:] #- np.mean(imall[i,:])
            #tc2 = batch_xt[dd,:]        
            normtc1 = np.linalg.norm(tc1)
            #normtc2 = np.linalg.norm(tc2)
            if normtc1  > 0.05: #and batch_ys[dd,0]*5000 > 3*500*batch_ys[dd,1] and batch_ys[dd,0]*5000 < 20*500*batch_ys[dd,1]
                batch_xs[dd,:] = tc1#/normtc1
                #batch_xt[dd,:] = tc2#/normtc2
            else:
        #        batch_xs[dd,:] = np.zeros([1,Ndiv])
        #        batch_xt[dd,:] = np.zeros([1,Ndiv])
                batch_ys[dd,:] = np.zeros([1,npar])
        batch_xs = batch_xs/np.ndarray.max(batch_xs.flatten())
        #batch_xt = batch_xt/np.ndarray.max(batch_xt.flatten())
        #for kk in range(batch_xs.shape[1]):
        #    batch_xs [:,kk] = (batch_xs[:,kk])/np.std(batch_xs[:,kk] )#- np.mean(batch_xs[:,kk])
        #    batch_xt [:,kk] = (batch_xt[:,kk])/np.std(batch_xt[:,kk] )#- np.mean(batch_xt[:,kk])

        #ut.plot(np.real(batch_xs[0,:]),pause_close = 1)

        #batch_xs = batch_xs *  batch_ys[0,3] #* np.random.ranf(1)[0]#
        model.test(batch_xs, batch_ys)        
        model.train(batch_xs, batch_ys)

        if i % 100 == 0:
            prey = model.prediction(batch_xs,np.zeros(batch_ys.shape))
            ut.plot(prey[...,0], batch_ys[...,0], line_type = '.', pause_close = 1)
            ut.plot(prey[...,1], batch_ys[...,1], line_type = '.', pause_close = 1)
            ut.plot(prey[...,2], batch_ys[...,2], line_type = '.', pause_close = 1)
            ut.plot(prey[...,3], batch_ys[...,3], line_type = '.', pause_close = 1)
            ut.plot(prey[...,4], batch_ys[...,4], line_type = '.', pause_close = 1)
            model.save(pathdat + 'test_model_save')
Пример #4
0
def test1():
    mat_contents = sio.loadmat(pathdat + 'dict_pca.mat')
    #dict_pca
    #dictall       = np.array(mat_contents["avedictall"].astype(np.float32))
    #label         = np.array(mat_contents["dict_label"].astype(np.float32))

    par = mat_contents["par"]

    read_coeff_flag = 1  # 0 not use coeff; 1 read coeff from mat file; 2 generate coeff by pca
    abs_flag = 0  #apply pca on absolute time course
    batch_size = 800
    Nk = par[0]['irfreq'][0][0][0]  #892#far.shape[0]#par.irfreq#

    if read_coeff_flag is 1:
        coeff = np.array(mat_contents["coeff"].astype(np.float32))
        Ndiv = coeff.shape[1]  #Nk #par[0]['ndiv'][0][0][0]#16
        orig_Ndiv = coeff.shape[0]  #Nk
    elif read_coeff_flag is 2:
        Ndiv = 20  #20 pca
        orig_Ndiv = Nk  #coeff.shape[0]#Nk
    else:
        Ndiv = Nk  #coeff.shape[1]#Nk #par[0]['ndiv'][0][0][0]#16
        orig_Ndiv = Nk  #coeff.shape[0]#Nk

    npar = 4
    model = tf_wrap.tf_model_top([None, Ndiv], [None, npar],
                                 tf_prediction_func, tf_optimize_func,
                                 tf_error_func)

    fa = par[0]['fa'][0][0][0].astype(np.float32)  #35#30 #deg
    tr = par[0]['tr'][0][0][0].astype(np.float32)  #3.932#4.337 #ms
    ti = par[0]['ti'][0][0][0].astype(np.float32)  #11.0 #ms
    #print(fa)
    #print(tr)
    #print(ti)
    #print(Nk)
    #print(Ndiv)

    far, trr = simut.rftr_const(Nk, fa, tr)
    #far,trr    = simut.rftr_rand(Nk, fa, tr, 2*tr)
    M0 = simut.def_M0()

    #run tensorflow on cpu, count of gpu = 0
    config = tf.ConfigProto()  #(device_count = {'GPU': 0})
    #allow tensorflow release gpu memory
    config.gpu_options.allow_growth = True

    #compute pca
    if read_coeff_flag is 2:
        batch_ys = np.random.uniform(0, 1, (batch_size, 4)).astype(np.float64)
        #batch_ys[:,0]      = np.random.uniform(0.1,0.6,(batch_size)).astype(np.float64)
        #batch_ys[:,1]      = np.random.uniform(0.1,0.3,(batch_size)).astype(np.float64)
        #batch_ys[:,2]      = np.random.uniform(0,1.0/tr,(batch_size)).astype(np.float64)
        #batch_ys[:,3]      = np.random.uniform(0.1,1.0,(batch_size)).astype(np.float64)# np.ones(batch_size)## np.random.uniform(0.5,1,(batch_size)).astype(np.float64)#

        # intial seq simulation with t1t2b0 values
        npca = Ndiv
        T1r, T2r, dfr, PDr = ssmrf.set_par(batch_ys)
        batch_xs_c = ssmrf.bloch_sim_batch_cuda(batch_size, 100, Nk, PDr, T1r,
                                                T2r, dfr, M0, trr, far, ti)
        #ut.plot(np.absolute(batch_xs_c[0,:]),pause_close =1)
        if orig_Ndiv < Nk:
            batch_xs = simut.average_dict(
                batch_xs_c, orig_Ndiv
            )  #(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff))
        else:
            batch_xs = batch_xs_c
        pca_mtx = np.dot(np.matrix(batch_xs).getH(), batch_xs)
        U, s, V = scipy.sparse.linalg.svds(pca_mtx, npca)
        coeff = U[:, npca - 1::-1]
        sio.savemat(pathdat + 'MRF_pca_coeff.mat', {
            'coeff': coeff,
            'dict': batch_xs
        })

    for i in range(1000000):
        batch_ys = np.random.uniform(0, 1, (batch_size, 4)).astype(np.float64)
        #batch_ys[:,0]      = np.random.uniform(0.1,0.6,(batch_size)).astype(np.float64)
        #batch_ys[:,1]      = np.random.uniform(0.1,0.3,(batch_size)).astype(np.float64)
        batch_ys[:, 2] = np.random.uniform(0, 1.0 / tr,
                                           (batch_size)).astype(np.float64)
        #batch_ys[:,3]      = np.ones(batch_size)#np.random.uniform(0.1,1.0,(batch_size)).astype(np.float64)# # np.random.uniform(0.5,1,(batch_size)).astype(np.float64)#
        #batch_ys[:,2]      = np.zeros(batch_size)
        #batch_ys[:,2]      = np.random.uniform(0.19,0.21,(batch_size)).astype(np.float64)#0.2*np.ones(batch_size)
        # intial seq simulation with t1t2b0 values
        #seq_data = ssad.irssfp_arrayin_data( batch_size, Nk ).set( batch_ys )
        T1r, T2r, dfr, PDr = ssmrf.set_par(batch_ys)
        batch_xs_c = ssmrf.bloch_sim_batch_cuda(batch_size, 100, Nk, PDr, T1r,
                                                T2r, dfr, M0, trr, far, ti)

        #ut.plot(np.absolute(batch_xs_c[0,:]),pause_close =1)
        if orig_Ndiv < Nk:
            batch_xs = simut.average_dict(
                batch_xs_c, orig_Ndiv
            )  #(np.dot(np.absolute(simut.average_dict(batch_xs_c, Ndiv)), coeff))
        else:
            batch_xs = batch_xs_c
        batch_xs = batch_xs + np.random.ranf(1)[0] * np.random.uniform(
            -0.005, 0.005, (batch_xs.shape))

        #batch_xs = batch_xs/np.ndarray.max(batch_xs.flatten())
        if read_coeff_flag is 1:
            if abs_flag:
                batch_xs = np.dot(np.absolute(batch_xs), coeff)
            else:
                batch_xs = np.absolute(np.dot(batch_xs, coeff))
        elif read_coeff_flag is 2:
            batch_xs = np.absolute(np.dot(batch_xs, coeff))
        else:
            batch_xs = np.absolute(batch_xs)

        for dd in range(batch_xs.shape[0]):
            tc1 = batch_xs[dd, :]  #- np.mean(imall[i,:])
            normtc1 = np.linalg.norm(tc1)
            if normtc1 > 0.04 and batch_ys[dd, 0] * 5000 > 3 * 500 * batch_ys[
                    dd, 1]:
                batch_xs[dd, :] = tc1  #/normtc1
            else:
                batch_ys[dd, :] = np.zeros([1, npar])

        batch_xs = 1000 * batch_xs
        #ut.plot(np.absolute(batch_xs[0,:]),pause_close =1)
        #batch_ys[:,2]      = np.zeros(batch_size)
        #batch_ys[:,3]      = np.zeros(batch_size)

        model.train(batch_xs, batch_ys)
        model.test(batch_xs, batch_ys)
        if i % 100 == 0:
            prey = model.prediction(batch_xs, np.zeros(batch_ys.shape))
            ut.plot(prey[..., 0],
                    batch_ys[..., 0],
                    line_type='.',
                    pause_close=1)
            ut.plot(prey[..., 1],
                    batch_ys[..., 1],
                    line_type='.',
                    pause_close=1)
            ut.plot(prey[..., 2],
                    batch_ys[..., 2],
                    line_type='.',
                    pause_close=1)
            ut.plot(prey[..., 3],
                    batch_ys[..., 3],
                    line_type='.',
                    pause_close=1)
            model.save(pathdat + 'test_model_savecnn')