def test_correct_nonce(): timestamp = datetime.utcfromtimestamp(0) block_one = Block( index=0, block_hash="", size=0, header=Header( timestamp=timestamp, transaction_merkle_root="", nonce=100, previous_hash="", difficulty=4, version=1, ), transaction_count=0, transactions=[], ) previous_hash = Verification.hash_block_header(block_one.header) open_transactions = [ SignedRawTransaction( details=Details( sender="test2", recipient="test", amount=2.5, nonce=0, timestamp=timestamp, public_key="pub_key", ), signature="sig", ) ] block_header = Header( version=1, difficulty=4, timestamp=datetime.utcfromtimestamp(1), transaction_merkle_root=get_merkle_root(open_transactions), previous_hash=previous_hash, nonce=0, ) block_header = Verification.proof_of_work(block_header) block_two = Block( index=1, block_hash="", size=0, header=block_header, transaction_count=len(open_transactions), transactions=[ Verification.hash_transaction(t) for t in open_transactions ], ) assert Verification.valid_nonce(block_two.header)
def hash_block_header(header: Header) -> str: """ First, convert the block header to an byte array Then hash the block using SHA256 """ hashable_block_header = header.SerializeToString() return Verification.hash_bytes_256(hashable_block_header)
def test_block_to_protobuf_and_back(): timestamp = datetime.utcfromtimestamp(0) transactions = [] header = Header( version=1, previous_hash="", timestamp=timestamp, transaction_merkle_root=get_merkle_root(transactions), difficulty=4, nonce=100, ) block = Block( index=0, block_hash="", size=0, header=header, transaction_count=len(transactions), transactions=transactions, ) p_block = block.SerializeToHex() assert p_block == "080010001a00220c080112001a002200280430642800" og_block = Block.ParseFromHex(p_block) assert og_block == Block( index=0, block_hash="", size=0, header=Header( version=1, previous_hash="", timestamp=timestamp, transaction_merkle_root=get_merkle_root(transactions), difficulty=4, nonce=100, ), transaction_count=len(transactions), transactions=transactions, )
def __init__( self, address: str, node_id: UUID, is_test: bool = False, *, difficulty: int = 4, version: int = 1, timestamp: Optional[datetime] = None, ) -> None: # Generate a globally unique UUID for this node self.chain_identifier = node_id self.__open_transactions = [] # type: List[FinalTransaction] self.nodes = set() # type: Set[str] self.difficulty = difficulty self.address = address self.version = version self.data_location = (f"data/{node_id}" if not is_test else f"{tempfile.tempdir}/blockchain/{node_id}") if is_test: try: shutil.rmtree(self.data_location) except Exception: pass # Create the 'genesis' block. This is the inital block. header = Header( timestamp=timestamp if timestamp is not None else datetime.utcnow(), transaction_merkle_root=get_merkle_root([]), nonce=100, previous_hash="", difficulty=difficulty, version=version, ) self.chain = [ Block( index=0, block_hash=Verification.hash_block_header(header), size=len(str(header)), header=header, transaction_count=0, transactions=[], ) ] self.load_data()
def test_block_format(): timestamp = datetime.utcfromtimestamp(0) transactions = [] Block( index=0, block_hash="", size=0, header=Header( version=1, previous_hash="", timestamp=timestamp, transaction_merkle_root=get_merkle_root(transactions), difficulty=4, nonce=100, ), transaction_count=len(transactions), transactions=transactions, )
def test_block_hash_happy_path(): timestamp = datetime.utcfromtimestamp(0) block = Block( index=0, block_hash="", size=0, header=Header( timestamp=timestamp, transaction_merkle_root="", nonce=100, previous_hash="", difficulty=4, version=1, ), transaction_count=0, transactions=[], ) # Just asserting that an error is not thrown when hashing the block Verification.hash_block_header(block.header)
def test_block_hash_mutliple_transaction_field_order_doesnt_matter(): timestamp = datetime.utcfromtimestamp(0) transactions = [ SignedRawTransaction( details=Details( sender="test", recipient="test2", amount=5.0, nonce=0, timestamp=timestamp, public_key="pub_key", ), signature="sig", ), SignedRawTransaction( details=Details( sender="test2", recipient="test", amount=2.5, nonce=0, timestamp=timestamp, public_key="pub_key", ), signature="sig", ), ] tx_merkle_root = get_merkle_root(transactions) block = Block( index=0, block_hash="", size=0, header=Header( timestamp=timestamp, transaction_merkle_root=tx_merkle_root, nonce=100, previous_hash="", difficulty=4, version=1, ), transaction_count=2, transactions=[Verification.hash_transaction(t) for t in transactions], ) first_hash = Verification.hash_block_header(block.header) block = Block( index=0, block_hash="", size=0, header=Header( timestamp=timestamp, transaction_merkle_root=tx_merkle_root, nonce=100, previous_hash="", difficulty=4, version=1, ), transaction_count=2, transactions=[Verification.hash_transaction(t) for t in transactions], ) second_hash = Verification.hash_block_header(block.header) assert first_hash == second_hash
def test_block_to_protobuf_and_back_with_transactions(): timestamp = datetime.utcfromtimestamp(0) transactions = [ FinalTransaction( transaction_hash="tx_hash_1", transaction_id="tx_hash_1", signed_transaction=SignedRawTransaction( details=Details( sender="test", recipient="test2", amount=4.5, nonce=0, timestamp=timestamp, public_key="pub_key", ), signature="sig", ), ) ] header = Header( version=1, previous_hash="", timestamp=timestamp, transaction_merkle_root=get_merkle_root( [t.signed_transaction for t in transactions]), difficulty=4, nonce=100, ) block = Block( index=0, block_hash="", size=0, header=header, transaction_count=len(transactions), transactions=[t.transaction_hash for t in transactions], ) p_block = block.SerializeToHex() assert ( p_block == "080010001a002260080112001a543061323330613034373436353733373431323035373436353733373433323139303030303030303030303030313234303230303032613030333230373730373536323566366236353739313230333733363936372200280430642801320974785f686173685f31" # noqa: E501 ) og_block = Block.ParseFromHex(p_block) assert og_block == Block( index=0, block_hash="", size=0, header=Header( version=1, previous_hash="", timestamp=timestamp, transaction_merkle_root=get_merkle_root( [t.signed_transaction for t in transactions]), difficulty=4, nonce=100, ), transaction_count=len(transactions), transactions=[t.transaction_hash for t in transactions], )
def mine_block( self, address: Optional[str] = None, difficulty: Optional[int] = None, version: Optional[int] = None, ) -> Optional[Block]: """ The current node runs the mining protocol, and depending on the difficulty, this could take a lot of processing power. Once the nonce is discovered, or "mined", the reward transaction is created. Then all of the open transactions are validated and verified, ensuring that the senders in all of the transactions have enough coin to conduct the transaction. Once the transactions are validated, the reward block is added to the list of open transactions. This is because Mining transactions do not need to be validated since they are created by the node itself. The block is then added directy to the node's chain and the open_transactions is cleared and ready for a new block to be mined Finally, the new block is broadcasted to all connected nodes. """ if not address: address = self.address if not address: return None difficulty = difficulty if difficulty is not None else self.difficulty version = version if version is not None else self.version last_block = self.last_block transaction_merkle_root = get_merkle_root( [tx.signed_transaction for tx in self.get_open_transactions]) previous_hash = Verification.hash_block_header(last_block.header) block_header = Header( version=version, difficulty=difficulty, timestamp=datetime.utcnow(), transaction_merkle_root=transaction_merkle_root, previous_hash=previous_hash, nonce=0, ) # We run the PoW algorithm to get the next nonce and return an updated block_header block_header = Verification.proof_of_work(block_header) # Create the transaction that will be rewarded to the miners for their work # The sender is "0" or "Mining" to signify that this node has mined a new coin. reward_signed = SignedRawTransaction( details=Details( sender="0", recipient=address, nonce=0, amount=MINING_REWARD, timestamp=datetime.utcnow(), public_key="coinbase", ), signature="coinbase", ) reward_transaction = FinalTransaction( transaction_hash=Verification.hash_transaction(reward_signed), transaction_id=Verification.hash_transaction(reward_signed), signed_transaction=reward_signed, ) # Copy transactions instead of manipulating the original open_transactions list # This ensures that if for some reason the mining should fail, # we don't have the reward transaction stored in the pending transactions copied_open_transactions = self.get_open_transactions for tx in copied_open_transactions: if not Wallet.verify_transaction(tx.signed_transaction, self.get_last_tx_nonce, exclude_from_open=True): return None FinalTransaction.SaveTransaction(self.data_location, reward_transaction, "mining") self.__broadcast_transaction(reward_transaction.signed_transaction, "mining") for t in copied_open_transactions: self.__broadcast_transaction(t.signed_transaction, "confirmed") copied_open_transactions.append(reward_transaction) block = Block( index=self.next_index, header=block_header, block_hash=Verification.hash_block_header(block_header), size=len(str(block_header)), transaction_count=len(copied_open_transactions), transactions=[ t.transaction_hash for t in copied_open_transactions ], ) # Add the block to the node's chain self.add_block_to_chain(block) # Reset the open list of transactions logger.info("Moving open transaction to confirmed storage at %s", self.data_location) FinalTransaction.MoveOpenTransactions(self.data_location) self.__open_transactions = [] self.save_data() self.__broadcast_block(block) return block