def monitoring_vars(self, cg): mu, sigma, coeff = VariableFilter( applications = [self.gmm_emitter.gmmmlp.apply], name_regex = "output")(cg.variables) min_sigma = sigma.min().copy(name="sigma_min") mean_sigma = sigma.mean().copy(name="sigma_mean") max_sigma = sigma.max().copy(name="sigma_max") min_mu = mu.min().copy(name="mu_min") mean_mu = mu.mean().copy(name="mu_mean") max_mu = mu.max().copy(name="mu_max") monitoring_vars = [mean_sigma, min_sigma, min_mu, max_mu, mean_mu, max_sigma] return monitoring_vars
def train(config, save_path, bokeh_name, params, bokeh_server, test_tag, use_load_ext, load_log, fast_start, validation_epochs, validation_batches, per_epochs, per_batches): root_path, extension = os.path.splitext(save_path) data = Data(**config['data']) # Build the main brick and initialize all parameters. recognizer = SpeechRecognizer( data.recordings_source, data.labels_source, data.eos_label, data.num_features, data.num_labels, name="recognizer", data_prepend_eos=data.prepend_eos, character_map=data.character_map, **config["net"]) for brick_path, attribute_dict in sorted( config['initialization'].items(), key=lambda (k, v): -k.count('/')): for attribute, value in attribute_dict.items(): brick, = Selector(recognizer).select(brick_path).bricks setattr(brick, attribute, value) brick.push_initialization_config() recognizer.initialize() # Separate attention_params to be handled differently # when regularization is applied attention = recognizer.generator.transition.attention attention_params = Selector(attention).get_parameters().values() logger.info( "Initialization schemes for all bricks.\n" "Works well only in my branch with __repr__ added to all them,\n" "there is an issue #463 in Blocks to do that properly.") def show_init_scheme(cur): result = dict() for attr in dir(cur): if attr.endswith('_init'): result[attr] = getattr(cur, attr) for child in cur.children: result[child.name] = show_init_scheme(child) return result logger.info(pprint.pformat(show_init_scheme(recognizer))) if params: logger.info("Load parameters from " + params) recognizer.load_params(params) if test_tag: tensor.TensorVariable.__str__ = tensor.TensorVariable.__repr__ __stream = data.get_stream("train") __data = next(__stream.get_epoch_iterator(as_dict=True)) recognizer.recordings.tag.test_value = __data[data.recordings_source] recognizer.recordings_mask.tag.test_value = __data[data.recordings_source + '_mask'] recognizer.labels.tag.test_value = __data[data.labels_source] recognizer.labels_mask.tag.test_value = __data[data.labels_source + '_mask'] theano.config.compute_test_value = 'warn' batch_cost = recognizer.get_cost_graph().sum() batch_size = named_copy(recognizer.recordings.shape[1], "batch_size") # Assumes constant batch size. `aggregation.mean` is not used because # of Blocks #514. cost = batch_cost / batch_size cost.name = "sequence_log_likelihood" logger.info("Cost graph is built") # Fetch variables useful for debugging. # It is important not to use any aggregation schemes here, # as it's currently impossible to spread the effect of # regularization on their variables, see Blocks #514. cost_cg = ComputationGraph(cost) r = recognizer energies, = VariableFilter( applications=[r.generator.readout.readout], name="output_0")( cost_cg) bottom_output, = VariableFilter( applications=[r.bottom.apply], name="output")( cost_cg) attended, = VariableFilter( applications=[r.generator.transition.apply], name="attended")( cost_cg) attended_mask, = VariableFilter( applications=[r.generator.transition.apply], name="attended_mask")( cost_cg) weights, = VariableFilter( applications=[r.generator.evaluate], name="weights")( cost_cg) max_recording_length = named_copy(r.recordings.shape[0], "max_recording_length") # To exclude subsampling related bugs max_attended_mask_length = named_copy(attended_mask.shape[0], "max_attended_mask_length") max_attended_length = named_copy(attended.shape[0], "max_attended_length") max_num_phonemes = named_copy(r.labels.shape[0], "max_num_phonemes") min_energy = named_copy(energies.min(), "min_energy") max_energy = named_copy(energies.max(), "max_energy") mean_attended = named_copy(abs(attended).mean(), "mean_attended") mean_bottom_output = named_copy(abs(bottom_output).mean(), "mean_bottom_output") weights_penalty = named_copy(monotonicity_penalty(weights, r.labels_mask), "weights_penalty") weights_entropy = named_copy(entropy(weights, r.labels_mask), "weights_entropy") mask_density = named_copy(r.labels_mask.mean(), "mask_density") cg = ComputationGraph([ cost, weights_penalty, weights_entropy, min_energy, max_energy, mean_attended, mean_bottom_output, batch_size, max_num_phonemes, mask_density]) # Regularization. It is applied explicitly to all variables # of interest, it could not be applied to the cost only as it # would not have effect on auxiliary variables, see Blocks #514. reg_config = config['regularization'] regularized_cg = cg if reg_config.get('dropout'): logger.info('apply dropout') regularized_cg = apply_dropout(cg, [bottom_output], 0.5) if reg_config.get('noise'): logger.info('apply noise') noise_subjects = [p for p in cg.parameters if p not in attention_params] regularized_cg = apply_noise(cg, noise_subjects, reg_config['noise']) regularized_cost = regularized_cg.outputs[0] regularized_weights_penalty = regularized_cg.outputs[1] # Model is weird class, we spend lots of time arguing with Bart # what it should be. However it can already nice things, e.g. # one extract all the parameters from the computation graphs # and give them hierahical names. This help to notice when a # because of some bug a parameter is not in the computation # graph. model = SpeechModel(regularized_cost) params = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat( [(key, params[key].get_value().shape) for key in sorted(params.keys())], width=120)) # Define the training algorithm. train_conf = config['training'] clipping = StepClipping(train_conf['gradient_threshold']) clipping.threshold.name = "gradient_norm_threshold" rule_names = train_conf.get('rules', ['momentum']) core_rules = [] if 'momentum' in rule_names: logger.info("Using scaling and momentum for training") core_rules.append(Momentum(train_conf['scale'], train_conf['momentum'])) if 'adadelta' in rule_names: logger.info("Using AdaDelta for training") core_rules.append(AdaDelta(train_conf['decay_rate'], train_conf['epsilon'])) max_norm_rules = [] if reg_config.get('max_norm', False): logger.info("Apply MaxNorm") maxnorm_subjects = VariableFilter(roles=[WEIGHT])(cg.parameters) if reg_config.get('max_norm_exclude_lookup', False): maxnorm_subjects = [v for v in maxnorm_subjects if not isinstance(get_brick(v), LookupTable)] logger.info("Parameters covered by MaxNorm:\n" + pprint.pformat([name for name, p in params.items() if p in maxnorm_subjects])) logger.info("Parameters NOT covered by MaxNorm:\n" + pprint.pformat([name for name, p in params.items() if not p in maxnorm_subjects])) max_norm_rules = [ Restrict(VariableClipping(reg_config['max_norm'], axis=0), maxnorm_subjects)] algorithm = GradientDescent( cost=regularized_cost + reg_config.get("penalty_coof", .0) * regularized_weights_penalty / batch_size + reg_config.get("decay", .0) * l2_norm(VariableFilter(roles=[WEIGHT])(cg.parameters)) ** 2, parameters=params.values(), step_rule=CompositeRule( [clipping] + core_rules + max_norm_rules + # Parameters are not changed at all # when nans are encountered. [RemoveNotFinite(0.0)])) # More variables for debugging: some of them can be added only # after the `algorithm` object is created. observables = regularized_cg.outputs observables += [ algorithm.total_step_norm, algorithm.total_gradient_norm, clipping.threshold] for name, param in params.items(): num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements ** 0.5 grad_norm = algorithm.gradients[param].norm(2) / num_elements ** 0.5 step_norm = algorithm.steps[param].norm(2) / num_elements ** 0.5 stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' observables.append(stats) def attach_aggregation_schemes(variables): # Aggregation specification has to be factored out as a separate # function as it has to be applied at the very last stage # separately to training and validation observables. result = [] for var in variables: if var.name == 'weights_penalty': result.append(named_copy(aggregation.mean(var, batch_size), 'weights_penalty_per_recording')) elif var.name == 'weights_entropy': result.append(named_copy(aggregation.mean( var, recognizer.labels_mask.sum()), 'weights_entropy_per_label')) else: result.append(var) return result # Build main loop. logger.info("Initialize extensions") extensions = [] if use_load_ext and params: extensions.append(Load(params, load_iteration_state=True, load_log=True)) if load_log and params: extensions.append(LoadLog(params)) extensions += [ Timing(after_batch=True), CGStatistics(), #CodeVersion(['lvsr']), ] extensions.append(TrainingDataMonitoring( [observables[0], algorithm.total_gradient_norm, algorithm.total_step_norm, clipping.threshold, max_recording_length, max_attended_length, max_attended_mask_length], after_batch=True)) average_monitoring = TrainingDataMonitoring( attach_aggregation_schemes(observables), prefix="average", every_n_batches=10) extensions.append(average_monitoring) validation = DataStreamMonitoring( attach_aggregation_schemes([cost, weights_entropy, weights_penalty]), data.get_stream("valid"), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=validation_epochs, every_n_batches=validation_batches, after_training=False) extensions.append(validation) recognizer.init_beam_search(10) per = PhonemeErrorRate(recognizer, data.get_dataset("valid")) per_monitoring = DataStreamMonitoring( [per], data.get_stream("valid", batches=False, shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=per_epochs, every_n_batches=per_batches, after_training=False) extensions.append(per_monitoring) track_the_best_per = TrackTheBest( per_monitoring.record_name(per)).set_conditions( before_first_epoch=True, after_epoch=True) track_the_best_likelihood = TrackTheBest( validation.record_name(cost)).set_conditions( before_first_epoch=True, after_epoch=True) extensions += [track_the_best_likelihood, track_the_best_per] extensions.append(AdaptiveClipping( algorithm.total_gradient_norm.name, clipping, train_conf['gradient_threshold'], decay_rate=0.998, burnin_period=500)) extensions += [ SwitchOffLengthFilter(data.length_filter, after_n_batches=train_conf.get('stop_filtering')), FinishAfter(after_n_batches=train_conf['num_batches'], after_n_epochs=train_conf['num_epochs']) .add_condition(["after_batch"], _gradient_norm_is_none), # Live plotting: requires launching `bokeh-server` # and allows to see what happens online. Plot(bokeh_name if bokeh_name else os.path.basename(save_path), [# Plot 1: training and validation costs [average_monitoring.record_name(regularized_cost), validation.record_name(cost)], # Plot 2: gradient norm, [average_monitoring.record_name(algorithm.total_gradient_norm), average_monitoring.record_name(clipping.threshold)], # Plot 3: phoneme error rate [per_monitoring.record_name(per)], # Plot 4: training and validation mean weight entropy [average_monitoring._record_name('weights_entropy_per_label'), validation._record_name('weights_entropy_per_label')], # Plot 5: training and validation monotonicity penalty [average_monitoring._record_name('weights_penalty_per_recording'), validation._record_name('weights_penalty_per_recording')]], every_n_batches=10, server_url=bokeh_server), Checkpoint(save_path, before_first_epoch=not fast_start, after_epoch=True, every_n_batches=train_conf.get('save_every_n_batches'), save_separately=["model", "log"], use_cpickle=True) .add_condition( ['after_epoch'], OnLogRecord(track_the_best_per.notification_name), (root_path + "_best" + extension,)) .add_condition( ['after_epoch'], OnLogRecord(track_the_best_likelihood.notification_name), (root_path + "_best_ll" + extension,)), ProgressBar(), Printing(every_n_batches=1, attribute_filter=PrintingFilterList() )] # Save the config into the status log = TrainingLog() log.status['_config'] = repr(config) main_loop = MainLoop( model=model, log=log, algorithm=algorithm, data_stream=data.get_stream("train"), extensions=extensions) main_loop.run()
def initialize_all(config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start): root_path, extension = os.path.splitext(save_path) data = Data(**config['data']) train_conf = config['training'] recognizer = create_model(config, data, test_tag) # Separate attention_params to be handled differently # when regularization is applied attention = recognizer.generator.transition.attention attention_params = Selector(attention).get_parameters().values() logger.info( "Initialization schemes for all bricks.\n" "Works well only in my branch with __repr__ added to all them,\n" "there is an issue #463 in Blocks to do that properly.") def show_init_scheme(cur): result = dict() for attr in dir(cur): if attr.endswith('_init'): result[attr] = getattr(cur, attr) for child in cur.children: result[child.name] = show_init_scheme(child) return result logger.info(pprint.pformat(show_init_scheme(recognizer))) prediction, prediction_mask = add_exploration(recognizer, data, train_conf) # # Observables: # primary_observables = [] # monitored each batch secondary_observables = [] # monitored every 10 batches validation_observables = [] # monitored on the validation set cg = recognizer.get_cost_graph(batch=True, prediction=prediction, prediction_mask=prediction_mask) labels, = VariableFilter(applications=[recognizer.cost], name='labels')(cg) labels_mask, = VariableFilter(applications=[recognizer.cost], name='labels_mask')(cg) gain_matrix = VariableFilter( theano_name=RewardRegressionEmitter.GAIN_MATRIX)(cg) if len(gain_matrix): gain_matrix, = gain_matrix primary_observables.append(rename(gain_matrix.min(), 'min_gain')) primary_observables.append(rename(gain_matrix.max(), 'max_gain')) batch_cost = cg.outputs[0].sum() batch_size = rename(recognizer.labels.shape[1], "batch_size") # Assumes constant batch size. `aggregation.mean` is not used because # of Blocks #514. cost = batch_cost / batch_size cost.name = "sequence_total_cost" logger.info("Cost graph is built") # Fetch variables useful for debugging. # It is important not to use any aggregation schemes here, # as it's currently impossible to spread the effect of # regularization on their variables, see Blocks #514. cost_cg = ComputationGraph(cost) r = recognizer energies, = VariableFilter(applications=[r.generator.readout.readout], name="output_0")(cost_cg) bottom_output = VariableFilter( # We need name_regex instead of name because LookupTable calls itsoutput output_0 applications=[r.bottom.apply], name_regex="output")(cost_cg)[-1] attended, = VariableFilter(applications=[r.generator.transition.apply], name="attended")(cost_cg) attended_mask, = VariableFilter(applications=[ r.generator.transition.apply ], name="attended_mask")(cost_cg) weights, = VariableFilter(applications=[r.generator.evaluate], name="weights")(cost_cg) from blocks.roles import AUXILIARY l2_cost, = VariableFilter(roles=[AUXILIARY], theano_name='l2_cost_aux')(cost_cg) cost_forward, = VariableFilter(roles=[AUXILIARY], theano_name='costs_forward_aux')(cost_cg) max_recording_length = rename(bottom_output.shape[0], "max_recording_length") # To exclude subsampling related bugs max_attended_mask_length = rename(attended_mask.shape[0], "max_attended_mask_length") max_attended_length = rename(attended.shape[0], "max_attended_length") max_num_phonemes = rename(labels.shape[0], "max_num_phonemes") min_energy = rename(energies.min(), "min_energy") max_energy = rename(energies.max(), "max_energy") mean_attended = rename(abs(attended).mean(), "mean_attended") mean_bottom_output = rename( abs(bottom_output).mean(), "mean_bottom_output") weights_penalty = rename(monotonicity_penalty(weights, labels_mask), "weights_penalty") weights_entropy = rename(entropy(weights, labels_mask), "weights_entropy") mask_density = rename(labels_mask.mean(), "mask_density") cg = ComputationGraph([ cost, weights_penalty, weights_entropy, min_energy, max_energy, mean_attended, mean_bottom_output, batch_size, max_num_phonemes, mask_density ]) # Regularization. It is applied explicitly to all variables # of interest, it could not be applied to the cost only as it # would not have effect on auxiliary variables, see Blocks #514. reg_config = config.get('regularization', dict()) regularized_cg = cg if reg_config.get('dropout'): logger.info('apply dropout') regularized_cg = apply_dropout(cg, [bottom_output], 0.5) if reg_config.get('noise'): logger.info('apply noise') noise_subjects = [ p for p in cg.parameters if p not in attention_params ] regularized_cg = apply_noise(cg, noise_subjects, reg_config['noise']) train_cost = regularized_cg.outputs[0] if reg_config.get("penalty_coof", .0) > 0: # big warning!!! # here we assume that: # regularized_weights_penalty = regularized_cg.outputs[1] train_cost = (train_cost + reg_config.get("penalty_coof", .0) * regularized_cg.outputs[1] / batch_size) if reg_config.get("decay", .0) > 0: train_cost = ( train_cost + reg_config.get("decay", .0) * l2_norm(VariableFilter(roles=[WEIGHT])(cg.parameters))**2) train_cost = rename(train_cost, 'train_cost') gradients = None if reg_config.get('adaptive_noise'): logger.info('apply adaptive noise') if ((reg_config.get("penalty_coof", .0) > 0) or (reg_config.get("decay", .0) > 0)): logger.error('using adaptive noise with alignment weight panalty ' 'or weight decay is probably stupid') train_cost, regularized_cg, gradients, noise_brick = apply_adaptive_noise( cg, cg.outputs[0], variables=cg.parameters, num_examples=data.get_dataset('train').num_examples, parameters=Model( regularized_cg.outputs[0]).get_parameter_dict().values(), **reg_config.get('adaptive_noise')) train_cost.name = 'train_cost' adapt_noise_cg = ComputationGraph(train_cost) model_prior_mean = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_mean')(adapt_noise_cg)[0], 'model_prior_mean') model_cost = rename( VariableFilter(applications=[noise_brick.apply], name='model_cost')(adapt_noise_cg)[0], 'model_cost') model_prior_variance = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_variance')(adapt_noise_cg)[0], 'model_prior_variance') regularized_cg = ComputationGraph( [train_cost, model_cost] + regularized_cg.outputs + [model_prior_mean, model_prior_variance]) primary_observables += [ regularized_cg.outputs[1], # model cost regularized_cg.outputs[2], # task cost regularized_cg.outputs[-2], # model prior mean regularized_cg.outputs[-1] ] # model prior variance model = Model(train_cost) if params: logger.info("Load parameters from " + params) # please note: we cannot use recognizer.load_params # as it builds a new computation graph that dies not have # shapred variables added by adaptive weight noise with open(params, 'r') as src: param_values = load_parameters(src) model.set_parameter_values(param_values) parameters = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat([(key, parameters[key].get_value().shape) for key in sorted(parameters.keys())], width=120)) # Define the training algorithm. clipping = StepClipping(train_conf['gradient_threshold']) clipping.threshold.name = "gradient_norm_threshold" rule_names = train_conf.get('rules', ['momentum']) core_rules = [] if 'momentum' in rule_names: logger.info("Using scaling and momentum for training") core_rules.append(Momentum(train_conf['scale'], train_conf['momentum'])) if 'adadelta' in rule_names: logger.info("Using AdaDelta for training") core_rules.append( AdaDelta(train_conf['decay_rate'], train_conf['epsilon'])) max_norm_rules = [] if reg_config.get('max_norm', False) > 0: logger.info("Apply MaxNorm") maxnorm_subjects = VariableFilter(roles=[WEIGHT])(cg.parameters) if reg_config.get('max_norm_exclude_lookup', False): maxnorm_subjects = [ v for v in maxnorm_subjects if not isinstance(get_brick(v), LookupTable) ] logger.info("Parameters covered by MaxNorm:\n" + pprint.pformat( [name for name, p in parameters.items() if p in maxnorm_subjects])) logger.info("Parameters NOT covered by MaxNorm:\n" + pprint.pformat([ name for name, p in parameters.items() if not p in maxnorm_subjects ])) max_norm_rules = [ Restrict(VariableClipping(reg_config['max_norm'], axis=0), maxnorm_subjects) ] burn_in = [] if train_conf.get('burn_in_steps', 0): burn_in.append(BurnIn(num_steps=train_conf['burn_in_steps'])) algorithm = GradientDescent( cost=train_cost, parameters=parameters.values(), gradients=gradients, step_rule=CompositeRule( [clipping] + core_rules + max_norm_rules + # Parameters are not changed at all # when nans are encountered. [RemoveNotFinite(0.0)] + burn_in), on_unused_sources='warn') logger.debug("Scan Ops in the gradients") gradient_cg = ComputationGraph(algorithm.gradients.values()) for op in ComputationGraph(gradient_cg).scans: logger.debug(op) # More variables for debugging: some of them can be added only # after the `algorithm` object is created. secondary_observables += list(regularized_cg.outputs) if not 'train_cost' in [v.name for v in secondary_observables]: secondary_observables += [train_cost] secondary_observables += [ algorithm.total_step_norm, algorithm.total_gradient_norm, clipping.threshold ] for name, param in parameters.items(): num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements**0.5 grad_norm = algorithm.gradients[param].norm(2) / num_elements**0.5 step_norm = algorithm.steps[param].norm(2) / num_elements**0.5 stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' secondary_observables.append(stats) primary_observables += [ train_cost, algorithm.total_gradient_norm, algorithm.total_step_norm, clipping.threshold, max_recording_length, max_attended_length, max_attended_mask_length ] validation_observables += [ rename(aggregation.mean(batch_cost, batch_size), cost.name), rename(aggregation.sum_(batch_size), 'num_utterances'), weights_entropy, weights_penalty ] def attach_aggregation_schemes(variables): # Aggregation specification has to be factored out as a separate # function as it has to be applied at the very last stage # separately to training and validation observables. result = [] for var in variables: if var.name == 'weights_penalty': result.append( rename(aggregation.mean(var, batch_size), 'weights_penalty_per_recording')) elif var.name == 'weights_entropy': result.append( rename(aggregation.mean(var, labels_mask.sum()), 'weights_entropy_per_label')) else: result.append(var) return result mon_conf = config['monitoring'] # Build main loop. logger.info("Initialize extensions") extensions = [] if use_load_ext and params: extensions.append( Load(params, load_iteration_state=True, load_log=True)) if load_log and params: extensions.append(LoadLog(params)) extensions += [ Timing(after_batch=True), CGStatistics(), #CodeVersion(['lvsr']), ] extensions.append( TrainingDataMonitoring(primary_observables + [l2_cost, cost_forward], after_batch=True)) average_monitoring = TrainingDataMonitoring( attach_aggregation_schemes(secondary_observables), prefix="average", every_n_batches=10) extensions.append(average_monitoring) validation = DataStreamMonitoring( attach_aggregation_schemes(validation_observables + [l2_cost, cost_forward]), data.get_stream("valid", shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['validate_every_epochs'], every_n_batches=mon_conf['validate_every_batches'], after_training=False) extensions.append(validation) per = PhonemeErrorRate(recognizer, data, **config['monitoring']['search']) per_monitoring = DataStreamMonitoring( [per], data.get_stream("valid", batches=False, shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['search_every_epochs'], every_n_batches=mon_conf['search_every_batches'], after_training=False) extensions.append(per_monitoring) track_the_best_per = TrackTheBest( per_monitoring.record_name(per)).set_conditions( before_first_epoch=True, after_epoch=True) track_the_best_cost = TrackTheBest( validation.record_name(cost)).set_conditions(before_first_epoch=True, after_epoch=True) extensions += [track_the_best_cost, track_the_best_per] extensions.append( AdaptiveClipping(algorithm.total_gradient_norm.name, clipping, train_conf['gradient_threshold'], decay_rate=0.998, burnin_period=500)) extensions += [ SwitchOffLengthFilter( data.length_filter, after_n_batches=train_conf.get('stop_filtering')), FinishAfter(after_n_batches=train_conf.get('num_batches'), after_n_epochs=train_conf.get('num_epochs')).add_condition( ["after_batch"], _gradient_norm_is_none), ] channels = [ # Plot 1: training and validation costs [ average_monitoring.record_name(train_cost), validation.record_name(cost) ], # Plot 2: gradient norm, [ average_monitoring.record_name(algorithm.total_gradient_norm), average_monitoring.record_name(clipping.threshold) ], # Plot 3: phoneme error rate [per_monitoring.record_name(per)], # Plot 4: training and validation mean weight entropy [ average_monitoring._record_name('weights_entropy_per_label'), validation._record_name('weights_entropy_per_label') ], # Plot 5: training and validation monotonicity penalty [ average_monitoring._record_name('weights_penalty_per_recording'), validation._record_name('weights_penalty_per_recording') ] ] if bokeh: extensions += [ Plot(bokeh_name if bokeh_name else os.path.basename(save_path), channels, every_n_batches=10, server_url=bokeh_server), ] extensions += [ Checkpoint(save_path, before_first_epoch=not fast_start, after_epoch=True, every_n_batches=train_conf.get('save_every_n_batches'), save_separately=["model", "log"], use_cpickle=True).add_condition( ['after_epoch'], OnLogRecord(track_the_best_per.notification_name), (root_path + "_best" + extension, )).add_condition( ['after_epoch'], OnLogRecord(track_the_best_cost.notification_name), (root_path + "_best_ll" + extension, )), ProgressBar() ] extensions.append(EmbedIPython(use_main_loop_run_caller_env=True)) if config['net']['criterion']['name'].startswith('mse'): extensions.append( LogInputsGains(labels, cg, recognizer.generator.readout.emitter, data)) if train_conf.get('patience'): patience_conf = train_conf['patience'] if not patience_conf.get('notification_names'): # setdefault will not work for empty list patience_conf['notification_names'] = [ track_the_best_per.notification_name, track_the_best_cost.notification_name ] extensions.append(Patience(**patience_conf)) extensions.append( Printing(every_n_batches=1, attribute_filter=PrintingFilterList())) return model, algorithm, data, extensions
def initialize_all(config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start): root_path, extension = os.path.splitext(save_path) data = Data(**config['data']) train_conf = config['training'] recognizer = create_model(config, data, test_tag) # Separate attention_params to be handled differently # when regularization is applied attention = recognizer.generator.transition.attention attention_params = Selector(attention).get_parameters().values() logger.info( "Initialization schemes for all bricks.\n" "Works well only in my branch with __repr__ added to all them,\n" "there is an issue #463 in Blocks to do that properly.") def show_init_scheme(cur): result = dict() for attr in dir(cur): if attr.endswith('_init'): result[attr] = getattr(cur, attr) for child in cur.children: result[child.name] = show_init_scheme(child) return result logger.info(pprint.pformat(show_init_scheme(recognizer))) prediction, prediction_mask = add_exploration(recognizer, data, train_conf) # # Observables: # primary_observables = [] # monitored each batch secondary_observables = [] # monitored every 10 batches validation_observables = [] # monitored on the validation set cg = recognizer.get_cost_graph( batch=True, prediction=prediction, prediction_mask=prediction_mask) labels, = VariableFilter( applications=[recognizer.cost], name='labels')(cg) labels_mask, = VariableFilter( applications=[recognizer.cost], name='labels_mask')(cg) gain_matrix = VariableFilter( theano_name=RewardRegressionEmitter.GAIN_MATRIX)(cg) if len(gain_matrix): gain_matrix, = gain_matrix primary_observables.append( rename(gain_matrix.min(), 'min_gain')) primary_observables.append( rename(gain_matrix.max(), 'max_gain')) batch_cost = cg.outputs[0].sum() batch_size = rename(recognizer.labels.shape[1], "batch_size") # Assumes constant batch size. `aggregation.mean` is not used because # of Blocks #514. cost = batch_cost / batch_size cost.name = "sequence_total_cost" logger.info("Cost graph is built") # Fetch variables useful for debugging. # It is important not to use any aggregation schemes here, # as it's currently impossible to spread the effect of # regularization on their variables, see Blocks #514. cost_cg = ComputationGraph(cost) r = recognizer energies, = VariableFilter( applications=[r.generator.readout.readout], name="output_0")( cost_cg) bottom_output = VariableFilter( # We need name_regex instead of name because LookupTable calls itsoutput output_0 applications=[r.bottom.apply], name_regex="output")( cost_cg)[-1] attended, = VariableFilter( applications=[r.generator.transition.apply], name="attended")( cost_cg) attended_mask, = VariableFilter( applications=[r.generator.transition.apply], name="attended_mask")( cost_cg) weights, = VariableFilter( applications=[r.generator.evaluate], name="weights")( cost_cg) max_recording_length = rename(bottom_output.shape[0], "max_recording_length") # To exclude subsampling related bugs max_attended_mask_length = rename(attended_mask.shape[0], "max_attended_mask_length") max_attended_length = rename(attended.shape[0], "max_attended_length") max_num_phonemes = rename(labels.shape[0], "max_num_phonemes") min_energy = rename(energies.min(), "min_energy") max_energy = rename(energies.max(), "max_energy") mean_attended = rename(abs(attended).mean(), "mean_attended") mean_bottom_output = rename(abs(bottom_output).mean(), "mean_bottom_output") weights_penalty = rename(monotonicity_penalty(weights, labels_mask), "weights_penalty") weights_entropy = rename(entropy(weights, labels_mask), "weights_entropy") mask_density = rename(labels_mask.mean(), "mask_density") cg = ComputationGraph([ cost, weights_penalty, weights_entropy, min_energy, max_energy, mean_attended, mean_bottom_output, batch_size, max_num_phonemes, mask_density]) # Regularization. It is applied explicitly to all variables # of interest, it could not be applied to the cost only as it # would not have effect on auxiliary variables, see Blocks #514. reg_config = config.get('regularization', dict()) regularized_cg = cg if reg_config.get('dropout'): logger.info('apply dropout') regularized_cg = apply_dropout(cg, [bottom_output], 0.5) if reg_config.get('noise'): logger.info('apply noise') noise_subjects = [p for p in cg.parameters if p not in attention_params] regularized_cg = apply_noise(cg, noise_subjects, reg_config['noise']) train_cost = regularized_cg.outputs[0] if reg_config.get("penalty_coof", .0) > 0: # big warning!!! # here we assume that: # regularized_weights_penalty = regularized_cg.outputs[1] train_cost = (train_cost + reg_config.get("penalty_coof", .0) * regularized_cg.outputs[1] / batch_size) if reg_config.get("decay", .0) > 0: train_cost = (train_cost + reg_config.get("decay", .0) * l2_norm(VariableFilter(roles=[WEIGHT])(cg.parameters)) ** 2) train_cost = rename(train_cost, 'train_cost') gradients = None if reg_config.get('adaptive_noise'): logger.info('apply adaptive noise') if ((reg_config.get("penalty_coof", .0) > 0) or (reg_config.get("decay", .0) > 0)): logger.error('using adaptive noise with alignment weight panalty ' 'or weight decay is probably stupid') train_cost, regularized_cg, gradients, noise_brick = apply_adaptive_noise( cg, cg.outputs[0], variables=cg.parameters, num_examples=data.get_dataset('train').num_examples, parameters=Model(regularized_cg.outputs[0]).get_parameter_dict().values(), **reg_config.get('adaptive_noise') ) train_cost.name = 'train_cost' adapt_noise_cg = ComputationGraph(train_cost) model_prior_mean = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_mean')(adapt_noise_cg)[0], 'model_prior_mean') model_cost = rename( VariableFilter(applications=[noise_brick.apply], name='model_cost')(adapt_noise_cg)[0], 'model_cost') model_prior_variance = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_variance')(adapt_noise_cg)[0], 'model_prior_variance') regularized_cg = ComputationGraph( [train_cost, model_cost] + regularized_cg.outputs + [model_prior_mean, model_prior_variance]) primary_observables += [ regularized_cg.outputs[1], # model cost regularized_cg.outputs[2], # task cost regularized_cg.outputs[-2], # model prior mean regularized_cg.outputs[-1]] # model prior variance model = Model(train_cost) if params: logger.info("Load parameters from " + params) # please note: we cannot use recognizer.load_params # as it builds a new computation graph that dies not have # shapred variables added by adaptive weight noise with open(params, 'r') as src: param_values = load_parameters(src) model.set_parameter_values(param_values) parameters = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat( [(key, parameters[key].get_value().shape) for key in sorted(parameters.keys())], width=120)) # Define the training algorithm. clipping = StepClipping(train_conf['gradient_threshold']) clipping.threshold.name = "gradient_norm_threshold" rule_names = train_conf.get('rules', ['momentum']) core_rules = [] if 'momentum' in rule_names: logger.info("Using scaling and momentum for training") core_rules.append(Momentum(train_conf['scale'], train_conf['momentum'])) if 'adadelta' in rule_names: logger.info("Using AdaDelta for training") core_rules.append(AdaDelta(train_conf['decay_rate'], train_conf['epsilon'])) max_norm_rules = [] if reg_config.get('max_norm', False) > 0: logger.info("Apply MaxNorm") maxnorm_subjects = VariableFilter(roles=[WEIGHT])(cg.parameters) if reg_config.get('max_norm_exclude_lookup', False): maxnorm_subjects = [v for v in maxnorm_subjects if not isinstance(get_brick(v), LookupTable)] logger.info("Parameters covered by MaxNorm:\n" + pprint.pformat([name for name, p in parameters.items() if p in maxnorm_subjects])) logger.info("Parameters NOT covered by MaxNorm:\n" + pprint.pformat([name for name, p in parameters.items() if not p in maxnorm_subjects])) max_norm_rules = [ Restrict(VariableClipping(reg_config['max_norm'], axis=0), maxnorm_subjects)] burn_in = [] if train_conf.get('burn_in_steps', 0): burn_in.append( BurnIn(num_steps=train_conf['burn_in_steps'])) algorithm = GradientDescent( cost=train_cost, parameters=parameters.values(), gradients=gradients, step_rule=CompositeRule( [clipping] + core_rules + max_norm_rules + # Parameters are not changed at all # when nans are encountered. [RemoveNotFinite(0.0)] + burn_in), on_unused_sources='warn') logger.debug("Scan Ops in the gradients") gradient_cg = ComputationGraph(algorithm.gradients.values()) for op in ComputationGraph(gradient_cg).scans: logger.debug(op) # More variables for debugging: some of them can be added only # after the `algorithm` object is created. secondary_observables += list(regularized_cg.outputs) if not 'train_cost' in [v.name for v in secondary_observables]: secondary_observables += [train_cost] secondary_observables += [ algorithm.total_step_norm, algorithm.total_gradient_norm, clipping.threshold] for name, param in parameters.items(): num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements ** 0.5 grad_norm = algorithm.gradients[param].norm(2) / num_elements ** 0.5 step_norm = algorithm.steps[param].norm(2) / num_elements ** 0.5 stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' secondary_observables.append(stats) primary_observables += [ train_cost, algorithm.total_gradient_norm, algorithm.total_step_norm, clipping.threshold, max_recording_length, max_attended_length, max_attended_mask_length] validation_observables += [ rename(aggregation.mean(batch_cost, batch_size), cost.name), rename(aggregation.sum_(batch_size), 'num_utterances'), weights_entropy, weights_penalty] def attach_aggregation_schemes(variables): # Aggregation specification has to be factored out as a separate # function as it has to be applied at the very last stage # separately to training and validation observables. result = [] for var in variables: if var.name == 'weights_penalty': result.append(rename(aggregation.mean(var, batch_size), 'weights_penalty_per_recording')) elif var.name == 'weights_entropy': result.append(rename(aggregation.mean(var, labels_mask.sum()), 'weights_entropy_per_label')) else: result.append(var) return result mon_conf = config['monitoring'] # Build main loop. logger.info("Initialize extensions") extensions = [] if use_load_ext and params: extensions.append(Load(params, load_iteration_state=True, load_log=True)) if load_log and params: extensions.append(LoadLog(params)) extensions += [ Timing(after_batch=True), CGStatistics(), #CodeVersion(['lvsr']), ] extensions.append(TrainingDataMonitoring( primary_observables, after_batch=True)) average_monitoring = TrainingDataMonitoring( attach_aggregation_schemes(secondary_observables), prefix="average", every_n_batches=10) extensions.append(average_monitoring) validation = DataStreamMonitoring( attach_aggregation_schemes(validation_observables), data.get_stream("valid", shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['validate_every_epochs'], every_n_batches=mon_conf['validate_every_batches'], after_training=False) extensions.append(validation) per = PhonemeErrorRate(recognizer, data, **config['monitoring']['search']) per_monitoring = DataStreamMonitoring( [per], data.get_stream("valid", batches=False, shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['search_every_epochs'], every_n_batches=mon_conf['search_every_batches'], after_training=False) extensions.append(per_monitoring) track_the_best_per = TrackTheBest( per_monitoring.record_name(per)).set_conditions( before_first_epoch=True, after_epoch=True) track_the_best_cost = TrackTheBest( validation.record_name(cost)).set_conditions( before_first_epoch=True, after_epoch=True) extensions += [track_the_best_cost, track_the_best_per] extensions.append(AdaptiveClipping( algorithm.total_gradient_norm.name, clipping, train_conf['gradient_threshold'], decay_rate=0.998, burnin_period=500)) extensions += [ SwitchOffLengthFilter( data.length_filter, after_n_batches=train_conf.get('stop_filtering')), FinishAfter(after_n_batches=train_conf.get('num_batches'), after_n_epochs=train_conf.get('num_epochs')) .add_condition(["after_batch"], _gradient_norm_is_none), ] channels = [ # Plot 1: training and validation costs [average_monitoring.record_name(train_cost), validation.record_name(cost)], # Plot 2: gradient norm, [average_monitoring.record_name(algorithm.total_gradient_norm), average_monitoring.record_name(clipping.threshold)], # Plot 3: phoneme error rate [per_monitoring.record_name(per)], # Plot 4: training and validation mean weight entropy [average_monitoring._record_name('weights_entropy_per_label'), validation._record_name('weights_entropy_per_label')], # Plot 5: training and validation monotonicity penalty [average_monitoring._record_name('weights_penalty_per_recording'), validation._record_name('weights_penalty_per_recording')]] if bokeh: extensions += [ Plot(bokeh_name if bokeh_name else os.path.basename(save_path), channels, every_n_batches=10, server_url=bokeh_server),] extensions += [ Checkpoint(save_path, before_first_epoch=not fast_start, after_epoch=True, every_n_batches=train_conf.get('save_every_n_batches'), save_separately=["model", "log"], use_cpickle=True) .add_condition( ['after_epoch'], OnLogRecord(track_the_best_per.notification_name), (root_path + "_best" + extension,)) .add_condition( ['after_epoch'], OnLogRecord(track_the_best_cost.notification_name), (root_path + "_best_ll" + extension,)), ProgressBar()] extensions.append(EmbedIPython(use_main_loop_run_caller_env=True)) if config['net']['criterion']['name'].startswith('mse'): extensions.append( LogInputsGains( labels, cg, recognizer.generator.readout.emitter, data)) if train_conf.get('patience'): patience_conf = train_conf['patience'] if not patience_conf.get('notification_names'): # setdefault will not work for empty list patience_conf['notification_names'] = [ track_the_best_per.notification_name, track_the_best_cost.notification_name] extensions.append(Patience(**patience_conf)) extensions.append(Printing(every_n_batches=1, attribute_filter=PrintingFilterList())) return model, algorithm, data, extensions