Пример #1
0
    def test_get_win_version_with_win_put(self):
        """Test version window is initialized, updated and cleared correctly with win put."""
        size = bf.size()
        rank = bf.rank()
        if size <= 1:
            fname = inspect.currentframe().f_code.co_name
            warnings.warn("Skip {} due to size 1".format(fname))
            return
        dtypes = [torch.FloatTensor, torch.DoubleTensor]
        if TEST_ON_GPU:
            dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor]

        # By default, we use exponential two ring topology.
        indegree = int(np.ceil(np.log2(size)))
        neighbor_ranks = [(rank - 2**i) % size
                          for i in range(indegree)]  # in-neighbor

        dims = [1, 2, 3]
        for dtype, dim in itertools.product(dtypes, dims):
            tensor = torch.FloatTensor(*([23] * dim)).fill_(1).mul_(rank)
            tensor = self.cast_and_place(tensor, dtype)
            window_name = "win_version_put_{}_{}".format(dim, dtype)
            bf.win_create(tensor, window_name)
            original_versions = list(bf.get_win_version(window_name).values())
            bf.barrier()
            bf.win_put(tensor, window_name)
            bf.barrier()
            versions_after_win_get = list(
                bf.get_win_version(window_name).values())
            bf.win_update(window_name)
            versions_after_win_update = list(
                bf.get_win_version(window_name).values())
            neighbor_ranks_number = len(neighbor_ranks)

            zero_number_in_original_versions = len(
                original_versions) - np.count_nonzero(original_versions)
            assert (zero_number_in_original_versions == neighbor_ranks_number
                    ), ("version initialization is wrong.")

            zero_number_after_win_update = len(
                versions_after_win_update) - np.count_nonzero(
                    versions_after_win_update)
            assert (zero_number_after_win_update == neighbor_ranks_number), (
                "version clear up is wrong.")

            expected_versions_after_win_get = [1] * neighbor_ranks_number

            assert (versions_after_win_get == expected_versions_after_win_get
                    ), ("version after win put is wrong.")

        for dtype, dim in itertools.product(dtypes, dims):
            window_name = "win_version_put_{}_{}".format(dim, dtype)
            is_freed = bf.win_free(window_name)
            assert is_freed, "bf.win_free do not free window object successfully."
Пример #2
0
    def test_win_put_with_varied_tensor_elements(self):
        """Test that the window put operation."""
        size = bf.size()
        rank = bf.rank()
        if size <= 1:
            fname = inspect.currentframe().f_code.co_name
            warnings.warn("Skip {} due to size 1".format(fname))
            return
        dtypes = [torch.FloatTensor, torch.DoubleTensor]
        if TEST_ON_GPU:
            dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor]

        # By default, we use exponential two ring topology.
        indegree = int(np.ceil(np.log2(size)))
        neighbor_ranks = [(rank - 2**i) % size
                          for i in range(indegree)]  # in-neighbor
        avg_value = (rank + np.sum(neighbor_ranks)) / float(indegree + 1)

        dims = [1, 2, 3]
        for dtype, dim in itertools.product(dtypes, dims):
            tensor = torch.FloatTensor(*([DIM_SIZE] * dim)).fill_(1).mul_(rank)
            base_tensor = torch.arange(
                DIM_SIZE**dim, dtype=torch.float32).view_as(tensor).div(1000)
            tensor = self.cast_and_place(tensor, dtype)
            base_tensor = self.cast_and_place(base_tensor, dtype)
            tensor = tensor + base_tensor
            window_name = "win_put_{}_{}".format(dim, dtype)
            bf.win_create(tensor, window_name)

            bf.win_put(tensor, window_name)
            bf.barrier()
            sync_result = bf.win_update(window_name)
            assert (list(sync_result.shape) == [DIM_SIZE] * dim), (
                "bf.win_update after win_put produces wrong shape tensor.")
            assert (
                (sync_result - base_tensor).data -
                avg_value).abs().max() < EPSILON, (
                    "bf.win_update after win_put produces wrong tensor value "
                    + "[{}-{}]!={} at rank {}.".format(
                        (sync_result - base_tensor).min(),
                        (sync_result - base_tensor).max(), avg_value, rank))

        time.sleep(0.5)
        for dtype, dim in itertools.product(dtypes, dims):
            window_name = "win_put_{}_{}".format(dim, dtype)
            is_freed = bf.win_free(window_name)
            assert is_freed, "bf.win_free do not free window object successfully."
Пример #3
0
    def test_asscoicated_with_p_random_test(self):
        size = bf.size()
        rank = bf.rank()
        dtypes = [torch.FloatTensor, torch.DoubleTensor]
        # Current, nccl version hasn't supported the associated with p yet.
        if TEST_ON_GPU and not bf.nccl_built():
            dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor]
        dims = [1]
        bf.turn_on_win_ops_with_associated_p()
        for dtype, dim in itertools.product(dtypes, dims):
            tensor = torch.FloatTensor(*([23] * dim)).fill_(1)
            tensor = self.cast_and_place(tensor, dtype)
            window_name = "win_asscoicate_with_p_random_{}_{}".format(
                dim, dtype)
            bf.win_create(tensor, window_name, zero_init=True)
            for _ in range(10):
                random_weights = np.random.rand(
                    len(bf.out_neighbor_ranks()) + 1)
                random_weights /= random_weights.sum()
                self_weight = random_weights[-1]
                dst_weights = {
                    r: random_weights[i]
                    for i, r in enumerate(bf.out_neighbor_ranks())
                }
                bf.win_put(tensor,
                           self_weight=self_weight,
                           dst_weights=dst_weights,
                           name=window_name,
                           require_mutex=True)
                bf.win_update(name=window_name, require_mutex=True)
                bf.win_accumulate(tensor,
                                  name=window_name,
                                  require_mutex=True,
                                  self_weight=self_weight,
                                  dst_weights=dst_weights)
                bf.win_update_then_collect(name=window_name)
            bf.barrier()
            bf.win_update_then_collect(name=window_name)
            associated_p = bf.win_associated_p(name=window_name)
            # Because the associated p should operate the same as tensor always
            # the following assert should be true no matter what order is excuted.
            assert abs(associated_p - tensor.data[0]) < EPSILON

        bf.turn_off_win_ops_with_associated_p()
Пример #4
0
    def test_win_put_with_given_destination(self):
        """Test that the window put operation with given destination."""
        size = bf.size()
        rank = bf.rank()
        if size <= 1:
            fname = inspect.currentframe().f_code.co_name
            warnings.warn("Skip {} due to size 1".format(fname))
            return
        dtypes = [torch.FloatTensor, torch.DoubleTensor]
        if TEST_ON_GPU:
            dtypes += [torch.cuda.FloatTensor, torch.cuda.DoubleTensor]

        # By default, we use exponential two ring topology.
        indegree = int(np.ceil(np.log2(size)))
        # We use given destination to form a (right-)ring.
        avg_value = (rank * indegree + 1.23 *
                     ((rank - 1) % size)) / float(indegree + 1)

        dims = [1, 2, 3]
        for dtype, dim in itertools.product(dtypes, dims):
            tensor = torch.FloatTensor(*([DIM_SIZE] * dim)).fill_(1).mul_(rank)
            tensor = self.cast_and_place(tensor, dtype)
            window_name = "win_put_given_{}_{}".format(dim, dtype)
            bf.win_create(tensor, window_name)
            bf.win_put(tensor,
                       window_name,
                       dst_weights={(rank + 1) % size: 1.23})
            bf.barrier()
            sync_result = bf.win_update(window_name)
            assert (list(sync_result.shape) == [DIM_SIZE] * dim), (
                "bf.win_update after win_put given destination produces wrong shape tensor."
            )
            assert (sync_result.data - avg_value).abs().max() < EPSILON, (
                "bf.win_update after win_put given destination produces wrong tensor value "
                + "[{}-{}]!={} at rank {}.".format(
                    sync_result.min(), sync_result.max(), avg_value, rank))

        time.sleep(0.5)
        for dtype, dim in itertools.product(dtypes, dims):
            window_name = "win_put_given_{}_{}".format(dim, dtype)
            is_freed = bf.win_free(window_name)
            assert is_freed, "bf.win_free do not free window object successfully."