Пример #1
0
def test_abf(rootdir):
    """Test loading of abf"""

    config = json.load(open(os.path.join(rootdir, 'configs', 'abf1.json')))
    config['path'] = os.path.join(rootdir, config['path'])

    extractor = bpefe.Extractor('testtype_abf', config, use_git=False)
    extractor.create_dataset()
    extractor.plt_traces()
    extractor.extract_features(threshold=-30)
    extractor.mean_features()
    extractor.plt_features()
    extractor.feature_config_cells()
    extractor.feature_config_all()
Пример #2
0
    def extr_features(self):
        with open(self.config_file, "r") as file:
            config = json.load(file)

        extractor = bpefe.Extractor('test_run', config)
        extractor.create_dataset()
        extractor.create_metadataset()
        #extractor.plt_traces()
        extractor.extract_features(threshold=-20)
        extractor.mean_features()
        #extractor.analyse_threshold()
        #extractor.plt_features()
        extractor.feature_config_cells(version='legacy')
        extractor.feature_config_all(version='legacy')
Пример #3
0
def test_config(rootdir, config_path):
    """Test config"""

    config = json.load(open(config_path))

    config['path'] = os.path.join(rootdir, config['path'])

    extractor = bpefe.Extractor('test_run', config, use_git=False)
    extractor.create_dataset()
    extractor.plt_traces()
    extractor.extract_features(threshold=-30)
    extractor.mean_features()
    # extractor.analyse_threshold()
    extractor.plt_features()
    extractor.feature_config_cells()
    extractor.feature_config_all()
    extractor.plt_features_dist()
    '''
Пример #4
0
def test_ibf_json(rootdir):
    """Test ibf json"""

    config_str = """
    {
      "cells": {
        "970509hp2": {
          "etype": "etype",
          "exclude": [
            [
              -1.8
            ],
            [
              -1.8
            ]
          ],
          "experiments": {
            "step": {
              "files": [
                "rattus-norvegicus____hippocampus____ca1____interneuron____cac____970509hp2____97509008",
                "rattus-norvegicus____hippocampus____ca1____interneuron____cac____970509hp2____97509009"
              ],
              "location": "soma"
            }
          },
          "ljp": 0,
          "v_corr": 0
        }
      },
      "comment": [],
      "features": {
        "step": [
          "time_to_last_spike",
          "time_to_second_spike",
          "voltage",
          "voltage_base"
        ]
      },
      "format": "ibf_json",
      "options": {
        "delay": 500,
        "logging": false,
        "nanmean": false,
        "relative": false,
        "target": [
          "all"
        ],
        "tolerance": 0.02
      },
      "path": "./data_ibf_json/eg_json_data/traces"
    }
    """

    config = json.loads(config_str)
    json.dump(config, open(os.path.join(rootdir, 'configs', 'ibf_json1.json'),
                           'w'), sort_keys=True, indent=4)
    config['path'] = os.path.join(rootdir, config['path'])

    import bluepyefe as bpefe

    extractor = bpefe.Extractor(
        'temptype_ibf', config)
    extractor.create_dataset()
    extractor.plt_traces()
    extractor.extract_features(threshold=-30)
    extractor.mean_features()
    extractor.plt_features()
    extractor.feature_config_cells(version='legacy')
    extractor.feature_config_all(version='legacy')
Пример #5
0
def test_config(rootdir):
    """Test config"""

    config_str = """
    {
      "comment": [
        "v_corr: normalize membrane potential to this value",
        "ljp: set so to 14mV",
        "etype: was defined individually by eye from plotted traces"
      ],
      "features": {
        "IDthresh": [
          "adaptation_index2",
          "mean_frequency",
          "time_to_first_spike",
          "ISI_log_slope",
          "ISI_log_slope_skip",
          "time_to_last_spike",
          "inv_time_to_first_spike",
          "inv_first_ISI",
          "inv_second_ISI",
          "inv_third_ISI",
          "inv_fourth_ISI",
          "inv_fifth_ISI",
          "inv_last_ISI",
          "voltage_deflection",
          "voltage_deflection_begin",
          "steady_state_voltage",
          "decay_time_constant_after_stim",
          "AP_amplitude"
        ]
      },
      "format": "igor",
      "cells": {
        "C060109A2-SR-C1": {
          "ljp": 14,
          "v_corr": false,
          "experiments": {
            "IDthresh": {
              "files": [
                {
                  "ordinal": "348",
                  "i_unit": "A",
                  "v_file": "C060109A2-SR-C1/X_IDthresh_ch1_348.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A2-SR-C1/X_IDthresh_ch0_348.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "349",
                  "i_unit": "A",
                  "v_file": "C060109A2-SR-C1/X_IDthresh_ch1_349.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A2-SR-C1/X_IDthresh_ch0_349.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "350",
                  "i_unit": "A",
                  "v_file": "C060109A2-SR-C1/X_IDthresh_ch1_350.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A2-SR-C1/X_IDthresh_ch0_350.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "351",
                  "i_unit": "A",
                  "v_file": "C060109A2-SR-C1/X_IDthresh_ch1_351.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A2-SR-C1/X_IDthresh_ch0_351.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "352",
                  "i_unit": "A",
                  "v_file": "C060109A2-SR-C1/X_IDthresh_ch1_352.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A2-SR-C1/X_IDthresh_ch0_352.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                }
              ],
              "location": "soma.v"
            }
          }
        },
        "C060109A1-SR-C1": {
          "ljp": 14,
          "v_corr": false,
          "experiments": {
            "IDthresh": {
              "files": [
                {
                  "ordinal": "349",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_349.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_349.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "350",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_350.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_350.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "351",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_351.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_351.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "352",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_352.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_352.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "353",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_353.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_353.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "354",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_354.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_354.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "355",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_355.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_355.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "356",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_356.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_356.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "357",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_357.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_357.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "362",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_362.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_362.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "363",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_363.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_363.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "364",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_364.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_364.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "365",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_365.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_365.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "366",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_366.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_366.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "367",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_367.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_367.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "368",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_368.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_368.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "369",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_369.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_369.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                },
                {
                  "ordinal": "370",
                  "i_unit": "A",
                  "v_file": "C060109A1-SR-C1/X_IDthresh_ch1_370.ibw",
                  "t_unit": "s",
                  "i_file": "C060109A1-SR-C1/X_IDthresh_ch0_370.ibw",
                  "v_unit": "V",
                  "dt": 0.00025
                }
              ],
              "location": "soma.v"
            }
          }
        }
      },
      "path": "./data/",
      "options": {
        "expthreshold": [
          "IDrest",
          "IDthresh"
        ],
        "relative": true,
        "delay": 0,
        "nanmean": false,
        "target": [
          -20,
          "noinput",
          50,
          100,
          120,
          "all"
        ],
        "tolerance": [
          5,
          false,
          5,
          5,
          5,
          false
        ],
        "nangrace": 0,
        "spike_threshold": 1,
        "amp_min": 0,
        "strict_stiminterval": {
          "SpikeRec": false,
          "base": true
        },
        "onoff": {
          "TesteCode": [
            100.0,
            600.0
          ],
          "APWaveform": [
            5.0,
            55.0
          ],
          "IV": [
            20.0,
            1020.0
          ],
          "IDrest": [
            700.0,
            2700.0
          ],
          "SpontAPs": [
            100.0,
            10100.0
          ],
          "APDrop": [
            10.0,
            15.0
          ],
          "IRhyperpol": [
            500.0,
            700.0
          ],
          "Spontaneous": [
            100.0,
            10100.0
          ],
          "IDthresh": [
            700.0,
            2700.0
          ],
          "APThreshold": [
            0.0,
            2000.0
          ],
          "SpikeRec": [
            10.0,
            13.5
          ],
          "IDdepol": [
            700.0,
            2700.0
          ],
          "Step": [
            700.0,
            2700.0
          ],
          "Delta": [
            10.0,
            60.0
          ],
          "IRdepol": [
            500.0,
            700.0
          ]
        },
        "logging": true,
        "boxcox": false
      }
    }
    """

    config = json.loads(config_str)
    json.dump(config,
              open(os.path.join(rootdir, 'configs', 'ibw1.json'), 'w'),
              sort_keys=True,
              indent=4)

    config['path'] = os.path.join(rootdir, config['path'])

    extractor = bpefe.Extractor('testtype_legacy', config, use_git=False)
    extractor.create_dataset()
    extractor.plt_traces()
    extractor.extract_features(threshold=-30)
    extractor.mean_features()
    extractor.analyse_threshold()
    extractor.plt_features()
    extractor.feature_config_cells(version='legacy')
    extractor.feature_config_all(version='legacy')

    extractor = bpefe.Extractor('testtype', config, use_git=False)
    extractor.create_dataset()
    extractor.plt_traces()
    extractor.extract_features(threshold=-30)
    extractor.mean_features()
    extractor.analyse_threshold()
    extractor.plt_features()
    extractor.feature_config_cells()
    extractor.feature_config_all()
    extractor.plt_features_dist()
Пример #6
0
def test_csv(rootdir):
    """Test loading from csv"""

    config_str = """
        {
      "features": {
        "step": [
          "ISI_log_slope",
          "mean_frequency",
          "adaptation_index2",
          "ISI_CV",
          "AP_height",
          "AHP_depth_abs",
          "AHP_depth_abs_slow",
          "AHP_slow_time",
          "AP_width",
          "AP_amplitude",
          "AP1_amp",
          "AP2_amp",
          "APlast_amp",
          "AP_duration_half_width",
          "AHP_depth",
          "fast_AHP",
          "AHP_time_from_peak",
          "voltage_deflection",
          "voltage_deflection_begin",
          "voltage_base",
          "steady_state_voltage",
          "Spikecount",
          "time_to_last_spike",
          "time_to_first_spike",
          "inv_time_to_first_spike",
          "inv_first_ISI",
          "inv_second_ISI",
          "inv_third_ISI",
          "inv_fourth_ISI",
          "inv_fifth_ISI",
          "inv_last_ISI",
          "decay_time_constant_after_stim",
          "AP_begin_voltage",
          "AP_rise_time",
          "AP_fall_time",
          "AP_rise_rate",
          "AP_fall_rate"
        ]
      },
      "path": "./data_csv/",
      "format": "csv_lccr",
      "comment": [
        "cells named using name of first trace file belonging to this cell",
        "v_corr: normalize membrane potential to this value
        (given in UCL excel sheet)",
        "ljp: set so that RMP (UCL) - 10mV ljp = RMP (Golding 2001) -14mV ljp",
        "etype: was defined individually by eye from plotted traces"
      ],
      "cells": {
        "TEST_CELL": {
          "v_corr": false,
          "ljp": 14.4,
          "experiments": {
            "step": {
              "location": "soma",
              "files": [
                "s150420-0403_ch1_cols",
                "s150420-0404_ch1_cols"
              ],
              "dt": 0.2,
              "startstop": [
                200,
                1000
              ],
              "amplitudes": [
                0.01,
                -0.01,
                0.02,
                -0.02,
                0.03,
                -0.03,
                0.04,
                -0.04,
                0.05,
                -0.05,
                0.06,
                -0.06,
                0.07,
                -0.07,
                0.08,
                -0.08,
                0.09,
                -0.09,
                0.1,
                -0.1,
                0.15,
                0.2,
                0.25,
                0.3,
                0.4,
                0.5,
                0.6
              ],
              "hypamp": 0.0,
              "ton": 200,
              "toff": 1000
            }
          }
        }
      },
      "options": {
        "relative": false,
        "tolerance": 0.01,
        "target": [
          0.02,
          -0.02,
          0.04,
          -0.04,
          0.06,
          -0.06,
          0.08,
          -0.08,
          0.1,
          -0.1,
          0.2,
          0.3,
          0.4,
          0.5,
          0.6
        ],
        "delay": 200,
        "nanmean": false
      }
    }
    """

    config = json.loads(config_str)
    json.dump(config,
              open(os.path.join(rootdir, 'configs', 'csv1.json'), 'w'),
              sort_keys=True,
              indent=4)
    config['path'] = os.path.join(rootdir, config['path'])

    import bluepyefe as bpefe

    extractor = bpefe.Extractor('testtype_csv', config, use_git=False)
    extractor.create_dataset()
    extractor.plt_traces()
    extractor.extract_features()
    extractor.mean_features()
    # extractor.analyse_threshold()
    extractor.feature_config_cells()
    extractor.feature_config_all()
    extractor.plt_features()
Пример #7
0
def extract_features(request):

    # if not ctx exit the application
    if "ctx" not in request.session:
        return render(request, 'efelg/overview.html')

    selected_traces_rest_json = request.session['selected_traces_rest_json']
    global_parameters_json = request.session['global_parameters_json']
    allfeaturesnames = efel.getFeatureNames()

    username = request.session['username']
    time_info = request.session['time_info']

    # conf_dir = request.session['main_json_dir']
    conf_dir = EfelStorage.getMainJsonDir()
    # traces_files_dir = request.session['user_files_dir']
    traces_files_dir = EfelStorage.getTracesDir()
    # user_files_dir = request.session['user_files_dir']
    user_files_dir = EfelStorage.getUserFilesDir(username, time_info)
    # user_results_dir = request.session['user_results_dir']
    user_results_dir = EfelStorage.getResultsDir(username, time_info)

    selected_features = request.session["selected_features"]

    cell_dict = {}

    for k in selected_traces_rest_json:
        path_to_file = os.path.join(user_files_dir, k + '.json')
        if k + '.json' not in os.listdir(user_files_dir):
            shutil.copy2(os.path.join(traces_files_dir, k + '.json'),
                         path_to_file)
        with open(path_to_file) as f:
            crr_file_dict = json.loads(f.read())
        crr_file_all_stim = list(crr_file_dict['traces'].keys())
        crr_file_sel_stim = selected_traces_rest_json[k]['stim']

        if "stimulus_unit" in crr_file_dict:
            crr_file_amp_unit = crr_file_dict["stimulus_unit"]
        elif "amp_unit" in crr_file_dict:
            crr_file_amp_unit = crr_file_dict["amp_unit"]
        else:
            raise Exception("stimulus_unit not found!")

        if "cell_id" in crr_file_dict:
            crr_cell_name = crr_file_dict["cell_id"]
        elif "name" in crr_file_dict:
            crr_cell_name = crr_file_dict["name"]
        else:
            raise Exception("cell_id not found!")

        new_keys = [("animal_species", "species"), ("brain_structure", "area"),
                    ("cell_soma_location", "region"), ("cell_type", "type"),
                    ("etype", "etype"), ("cell_id", "name")]

        keys = [
            crr_file_dict[t[0]]
            if t[0] in crr_file_dict else crr_file_dict[t[1]] for t in new_keys
        ]
        keys2 = []
        for kk2 in keys:
            if not type(kk2) == list:
                keys2.append(kk2)
            else:
                for kkk in kk2:
                    keys2.append(kkk)

        crr_key = '____'.join(keys2)
        """
        if crr_key in cell_dict:
            print("here")
            cell_dict[crr_key]['stim'].append(crr_file_sel_stim)
            cell_dict[crr_key]['files'].append(k)
            cell_dict[crr_key]['v_corr'] = crr_vcorr
        else:
        """

        cell_dict[crr_key] = {}
        cell_dict[crr_key]['stim'] = [crr_file_sel_stim]
        cell_dict[crr_key]['files'] = [k]
        cell_dict[crr_key]['cell_name'] = crr_cell_name
        cell_dict[crr_key]['all_stim'] = crr_file_all_stim
        cell_dict[crr_key]['v_corr'] = [
            int(selected_traces_rest_json[k]['v_corr'])
        ]

    target = []
    final_cell_dict = {}
    final_exclude = []

    for key in cell_dict:
        crr_el = cell_dict[key]
        for c_stim_el in crr_el['stim']:
            [
                target.append(float(i)) for i in c_stim_el
                if float(i) not in target
            ]
        exc_stim_lists = [
            list(set(crr_el['all_stim']) - set(sublist))
            for sublist in crr_el['stim']
        ]
        crr_exc = []
        for crr_list in exc_stim_lists:
            crr_stim_val = [float(i) for i in crr_list]
            crr_exc.append(crr_stim_val)

        final_cell_dict[cell_dict[key]['cell_name']] = \
            {
                'v_corr': crr_el['v_corr'],
                'ljp': 0,
                'experiments': {
                    'step': {
                        'location': 'soma',
                        'files': [str(i) for i in crr_el['files']]
                    }
                },
                'etype': 'etype',
                'exclude': crr_exc,
                'exclude_unit': [crr_file_amp_unit for i in range(len(crr_exc))]
            }

    # build configuration dictionary

    config = {}
    config['features'] = {'step': [str(i) for i in selected_features]}
    config['path'] = user_files_dir
    config['format'] = 'ibf_json'
    config['comment'] = []
    config['cells'] = final_cell_dict
    config['options'] = {
        # 'featconffile': './pt_conf.json',
        # 'featzerotonan': False,
        'zero_to_nan': {
            'flag':
            bool(global_parameters_json['zero_to_nan']),
            'value':
            global_parameters_json['value'],
            'mean_features_no_zeros':
            global_parameters_json['mean_features_no_zeros']
        },
        'relative': False,
        'tolerance': 0.02,
        'target': target,
        'target_unit': 'nA',
        'delay': 500,
        'nanmean': True,
        'logging': True,
        'nangrace': 0,
        # 'spike_threshold': 1,
        'amp_min': -1e22,
        'zero_std': bool(global_parameters_json['zero_std']),
        'trace_check': False,
        'strict_stiminterval': {
            'base': True
        },
        'print_table': {
            'flag': True,
            'num_events': int(global_parameters_json['num_events']),
        }
    }

    try:
        main_results_folder = os.path.join(user_results_dir,
                                           time_info + "_nfe_results")
        extractor = bpefe.Extractor(main_results_folder, config)
        extractor.create_dataset()
        extractor.plt_traces()
        if global_parameters_json['threshold'] != '':
            extractor.extract_features(
                threshold=int(global_parameters_json['threshold']))
        else:
            extractor.extract_features(threshold=-20)
        extractor.mean_features()
        extractor.plt_features()
        extractor.feature_config_cells(version="legacy")
        extractor.feature_config_all(version="legacy")
    except ValueError as e:
        print('SOME ERROR OCCURED')
        print(e)

    conf_cit = os.path.join(conf_dir, 'citation_list.json')
    final_cit_file = os.path.join(main_results_folder, 'HOWTOCITE.txt')
    resources.print_citations(selected_traces_rest_json, conf_cit,
                              final_cit_file)

    zip_name = time_info + '_nfe_results.zip'
    zip_path = os.path.join(user_results_dir, zip_name)
    request.session['nfe_result_file_zip'] = zip_path
    request.session['nfe_result_file_zip_name'] = zip_name

    for k in selected_traces_rest_json:
        f = os.path.join(user_results_dir, k + ".json")
        if os.path.exists(f):
            os.remove(f)

    #parent_folder = os.path.dirname(full_crr_result_folder)
    contents = os.walk(main_results_folder)
    try:
        zip_file = zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED)
        for root, folders, files in contents:
            for folder_name in folders:
                absolute_path = os.path.join(root, folder_name)
                relative_path = absolute_path.replace(
                    main_results_folder + os.sep, '')
                zip_file.write(absolute_path, relative_path)
            for file_name in files:
                absolute_path = os.path.join(root, file_name)
                relative_path = absolute_path.replace(
                    main_results_folder + os.sep, '')
                zip_file.write(absolute_path, relative_path)
    except IOError as message:
        print(message)
        sys.exit(1)
    except OSError as message:
        print(message)
        sys.exit(1)
    except zip_file.BadZipfile as message:
        print(message)
        sys.exit(1)
    finally:
        zip_file.close()

    # accesslogger.info(resources.string_for_log('extract_features', request, page_spec_string='___'.join(check_features)))
    return HttpResponse(json.dumps({"status": "OK"}))
Пример #8
0
def extract_features(request):

    # if not ctx exit the application
    if not "ctx" in request.session:
        return render(request, 'efelg/hbp_redirect.html')

    data_dir = request.session['data_dir']
    json_dir = request.session['json_dir']
    selected_traces_rest_json = request.session['selected_traces_rest_json']
    allfeaturesnames = efel.getFeatureNames()

    crr_user_folder = request.session['time_info']
    full_crr_result_folder = request.session['u_crr_res_r_dir']
    full_crr_uploaded_folder = request.session['u_up_dir']
    full_crr_data_folder = request.session['u_crr_res_d_dir']
    full_crr_user_folder = request.session['user_crr_res_dir']
    check_features = request.session["check_features"]
    request.session['selected_features'] = check_features
    cell_dict = {}
    selected_traces_rest = []

    for k in selected_traces_rest_json:
        #crr_vcorr = selected_traces_rest_json[k]['vcorr']
        crr_file_rest_name = k + '.json'
        crr_name_split = k.split('____')
        crr_cell_name = crr_name_split[5]
        crr_sample_name = crr_name_split[6]
        crr_key = crr_name_split[0] + '____' + crr_name_split[1] + '____' + \
                crr_name_split[2] + '____' + crr_name_split[3] + '____' + \
                crr_name_split[4] +  '____' + crr_name_split[5]
        if os.path.isfile(os.path.join(json_dir, crr_file_rest_name)):
            crr_json_file = os.path.join(json_dir, crr_file_rest_name)
        elif os.path.isfile(os.path.join(full_crr_uploaded_folder, \
                crr_file_rest_name)):
            crr_json_file = os.path.join(full_crr_uploaded_folder, \
                    crr_file_rest_name)
        else:
            continue

        with open(crr_json_file) as f:
            crr_file_dict_read = f.read()

        crr_file_dict = json.loads(crr_file_dict_read)
        crr_file_all_stim = crr_file_dict['traces'].keys()
        crr_file_sel_stim = selected_traces_rest_json[k]['stim']

        crr_cell_data_folder = os.path.join(full_crr_data_folder,
                                            crr_cell_name)
        crr_cell_data_folder = full_crr_data_folder
        if not os.path.exists(crr_cell_data_folder):
            os.makedirs(crr_cell_data_folder)
        shutil.copy2(crr_json_file, crr_cell_data_folder)

        #
        if crr_key in cell_dict:
            cell_dict[crr_key]['stim'].append(crr_file_sel_stim)
            cell_dict[crr_key]['files'].append(k)
            #cell_dict[crr_key]['vcorr'].append(float(crr_vcorr))
        else:
            cell_dict[crr_key] = {}
            cell_dict[crr_key]['stim'] = [crr_file_sel_stim]
            cell_dict[crr_key]['files'] = [k]
            cell_dict[crr_key]['cell_name'] = crr_cell_name
            cell_dict[crr_key]['all_stim'] = crr_file_all_stim
            #cell_dict[crr_key]['vcorr'] = [float(crr_vcorr)]

    target = []
    final_cell_dict = {}
    final_exclude = []
    for key in cell_dict:
        crr_el = cell_dict[key]
        #v_corr = crr_el['vcorr']
        v_corr = 0
        for c_stim_el in crr_el['stim']:
            [
                target.append(float(i)) for i in c_stim_el
                if float(i) not in target
            ]
        exc_stim_lists = [list(set(crr_el['all_stim']) - set(sublist)) for \
                sublist in crr_el['stim']]
        crr_exc = []
        for crr_list in exc_stim_lists:
            crr_stim_val = [float(i) for i in crr_list]
            crr_exc.append(crr_stim_val)
        final_cell_dict[cell_dict[key]['cell_name']] = {'v_corr':v_corr, \
                'ljp':0, 'experiments':{'step': {'location':'soma', 'files': \
                [str(i) for i in crr_el['files']]}}, 'etype':'etype', \
                'exclude':crr_exc}

    # build configuration dictionary
    config = {}
    config['features'] = {'step': [str(i) for i in check_features]}
    config['path'] = crr_cell_data_folder
    config['format'] = 'ibf_json'
    config['comment'] = []
    config['cells'] = final_cell_dict
    config['options'] = {'relative': False, 'tolerance': 0.02, \
            'target': target, 'delay': 500, 'nanmean': False, 'logging':False, \
            'nangrace': 0, 'spike_threshold': 1, 'amp_min': 0,
            'strict_stiminterval': {'base': True}}
    try:
        extractor = bpefe.Extractor(full_crr_result_folder,
                                    config,
                                    use_git=False)
        extractor.create_dataset()
        extractor.plt_traces()
        extractor.extract_features()
        extractor.mean_features()
        extractor.plt_features()
        extractor.feature_config_cells(version="legacy")
        extractor.feature_config_all(version="legacy")
    except:
        return render(request, 'efelg/hbp_redirect.html', {"status":"KO", \
                "message": "An error occured while extracting the features. \
                Either you selected too many data or the traces were corrupted."                                                                                })

    conf_dir = request.session['conf_dir']
    conf_cit = os.path.join(conf_dir, 'citation_list.json')
    final_cit_file = os.path.join(full_crr_result_folder, 'HOWTOCITE.txt')
    resources.print_citations(selected_traces_rest_json, conf_cit,
                              final_cit_file)

    crr_result_folder = request.session['time_info']
    output_path = os.path.join(full_crr_user_folder, crr_user_folder + \
            '_results.zip')
    request.session['result_file_zip'] = output_path
    request.session['result_file_zip_name'] = crr_user_folder + '_results.zip'
    parent_folder = os.path.dirname(full_crr_result_folder)
    contents = os.walk(full_crr_result_folder)
    try:
        zip_file = zipfile.ZipFile(output_path, 'w', zipfile.ZIP_DEFLATED)
        for root, folders, files in contents:
            for folder_name in folders:
                absolute_path = os.path.join(root, folder_name)
                relative_path = absolute_path.replace(parent_folder + \
                        os.sep, '')
                zip_file.write(absolute_path, relative_path)
            for file_name in files:
                absolute_path = os.path.join(root, file_name)
                relative_path = absolute_path.replace(parent_folder + \
                        os.sep, '')
                zip_file.write(absolute_path, relative_path)
    except IOError as message:
        print(message)
        sys.exit(1)
    except OSError as message:
        print(message)
        sys.exit(1)
    except zip_file.BadZipfile as message:
        print(message)
        sys.exit(1)
    finally:
        zip_file.close()


    accesslogger.info(resources.string_for_log('extract_features', \
            request, page_spec_string = '___'.join(check_features)))
    return HttpResponse(json.dumps({"status": "OK"}))