Пример #1
0
def init_rbm2(args):
    if os.path.isdir(args.rbm2_dirpath):
        print("\nLoading RBM #2 ...\n\n")
        rbm2 = BernoulliRBM.load_model(args.rbm2_dirpath)
    else:
        print("\nInitializing RBM #2 ...\n\n")
        epochs = args.epochs[1]
        n_every = args.increase_n_gibbs_steps_every

        n_gibbs_steps = np.arange(args.n_gibbs_steps[1],
                                  args.n_gibbs_steps[1] + epochs / n_every)
        learning_rate = args.lr[1] / np.arange(1, 1 + epochs / n_every)
        n_gibbs_steps = np.repeat(n_gibbs_steps, n_every)
        learning_rate = np.repeat(learning_rate, n_every)

        rbm2 = BernoulliRBM(
            n_visible=args.n_hidden[0],
            n_hidden=args.n_hidden[1],
            W_init=args.w_init[1],
            vb_init=args.vb_init[1],
            hb_init=args.hb_init[1],
            n_gibbs_steps=n_gibbs_steps,
            learning_rate=learning_rate,
            momentum=args.momentum,
            max_epoch=max(args.epochs[1], n_every),
            batch_size=args.batch_size[1],
            l2=args.l2[1],
            sample_h_states=True,
            sample_v_states=True,
            sparsity_cost=0.,
            dbm_last=True,  # !!!
            metrics_config=dict(
                msre=True,
                pll=True,
                train_metrics_every_iter=500,
            ),
            verbose=True,
            #display_filters=0,
            #display_hidden_activations=24,
            random_seed=args.random_seed[1],
            v_shape=(20, 20),  # what's the v_shape in this case?
            freeze_weights=args.freeze_weights,
            prune=args.prune,
            #filter_shape =  (10,10), #,args.filter_shape[1],
            dtype='float32',
            tf_saver_params=dict(max_to_keep=1),
            model_path=args.rbm2_dirpath)
        #run on cpu
        config = tf.ConfigProto(device_count={'GPU': 0})
        rbm2._tf_session_config = config
        rbm2.init()
    return rbm2
Пример #2
0
def make_rbm1(X, args):
    if os.path.isdir(args.rbm1_dirpath):
        print("\nLoading RBM #1 ...\n\n")
        rbm1 = BernoulliRBM.load_model(args.rbm1_dirpath)
    else:
        print("\nTraining RBM #1 ...\n\n")

        if not hasattr(args, 'double_rf'):
            args.double_rf = False

        rbm1 = BernoulliRBM(
            n_visible=args.n_vis,
            n_hidden=args.n_hidden[0],
            W_init=args.w_init[0],
            vb_init=args.vb_init[0],
            hb_init=args.hb_init[0],
            n_gibbs_steps=args.n_gibbs_steps[0],
            learning_rate=args.lr[0],
            momentum=args.momentum,
            max_epoch=args.epochs[0],
            batch_size=args.batch_size[0],
            l2=args.l2[0],
            sample_h_states=True,
            sample_v_states=True,
            sparsity_cost=0.,
            dbm_first=True,  # !!!
            metrics_config=dict(
                msre=True,
                pll=True,
                train_metrics_every_iter=500,
            ),
            verbose=True,
            #display_filters=30,
            #display_hidden_activations=24,
            v_shape=args.v_shape,
            freeze_weights=args.freeze_weights,
            prune=args.prune,
            filter_shape=args.filter_shape[0],
            double_rf=args.double_rf,
            random_seed=args.random_seed[0],
            dtype='float32',
            tf_saver_params=dict(max_to_keep=1),
            model_path=args.rbm1_dirpath)
        #run on cpu
        config = tf.ConfigProto(device_count={'GPU': 0})
        rbm1._tf_session_config = config
        rbm1.fit(X)
    return rbm1