Пример #1
0
def pt_evaluation_for_test(bn: OpenBooleanNetwork, test_params: Iterable):
    '''
    Run a simulation for each set of test parameters. 
    '''
    
    data = []

    for tp in test_params:
        
        ### Generate ad hoc configuration for simulation purposes only ################################
        simconfig = GLOBALS.generate_sim_config()

        ### Generate simulation world file for simulation purposes only ################################
        if not simconfig.webots_world_path.exists():

            logger.info('Generated webots world file from template...')
            
            stub_utils.generate_webots_worldfile(
                GLOBALS.webots_world_path, 
                simconfig.webots_world_path,
                simconfig.arena_params
            )
        
        # May be launched parallel (... ?)
        data.append(
            evaluate_pt_bncontroller(simconfig, bn, tp)
        )

    return tuple(list(e) for e in zip(*data))
Пример #2
0
def evaluate_pt_bncontroller(simconfig: Config, bn: OpenBooleanNetwork, on: tuple):
    '''
    Evaluate the given BN model as a robot controller on the given set of points/parameters.

    Returns:
        * function score
        * final distance
        * light initial position
        * agent initial position
        * agent y-axis rotation
    '''
    lpos, apos, yrot, *_ = on

    simconfig.sim_agent_position = apos
    simconfig.sim_light_position = lpos
    simconfig.sim_agent_yrot_rad = yrot

    stub_utils.run_simulation(simconfig, bn)
    
    data = read_json(simconfig.sim_data_path)

    score, dist = simconfig.eval_aggr_function(data, lpos)

    logger.info(
        'iDistance: (m)', lpos.dist(apos), '|',
        'yRot: (deg)', (yrot / math.pi * 180), '|',
        'fDistance: (m)', dist, '|',
        'score: (m2/W)', score, '|',
    )

    return score, dist, lpos, apos, yrot
Пример #3
0
def test_bncontrollers(bns: dict):
    '''
    Test each BN in the collection on the same set of points.

    Return the collected evaluation data for each test.
    '''

    spawn_points = GLOBALS.generate_spawn_points()

    data = dict()

    for k in bns:

        logger.info(f"Boolean Network {k}")

        test_params = generate_test_params(spawn_points)

        data[k] = test_bncontroller(bns[k], test_params)

    return data
Пример #4
0
def pt_evaluation_for_train(bn: OpenBooleanNetwork, ctx: VNSEvalContext, spawn_points: list):
    '''
    Aggregates test parameters and run a simulation for each set of them. 
    '''
    test_params = itertools.product(
        spawn_points['light_spawn_points'], 
        spawn_points['agent_spawn_points'], 
        spawn_points['agent_yrots']
    )

    fscores, *_ = pt_evaluation_for_test(bn, test_params)

    new_score = statistics.mean(fscores), statistics.stdev(fscores)

    logger.info(
        'it:', ctx.it, 
        'flips:', ctx.n_flips, 
        'stalls:', ctx.n_stalls,
        'stagnation: ', ctx.stagnation,
        'dist --',
        'old:', ctx.score,  
        'new:', new_score
    )

    if ctx.comparator(new_score, ctx.score):
        
        stub_utils.save_subopt_model(
            GLOBALS.bn_model_path,
            new_score,
            ctx.it,
            bn.to_json(), 
            save_subopt=ctx.comparator(
                new_score, 
                GLOBALS.train_save_suboptimal_models
            )
        )

    return new_score

################################################################################################
Пример #5
0
def generate_or_load_bn(params: BNParams, path: Path, save_virgin=False):

    __bn = None

    if check_path(path, create_if_dir=True):

        generator = template_behaviour_generator(*params)

        __bn = generate_rbn(generator.new_obn, force_consistency=True)

        if save_virgin:
            p = path / 'virgin_bn_{date}.json'.format(date=FROZEN_DATE)

            write_json(__bn.to_json(), p)

            logger.info(f'Virgin BN saved to {p}.')

    else:
        __bn = OpenBooleanNetwork.from_json(read_json(path))
        logger.info(f'BN loaded from {path}.')

    return __bn
Пример #6
0
    ### BN Generation / Loading ####################################################

    bn = generate_or_load_bn(params=GLOBALS.bn_params,
                             path=GLOBALS.bn_model_path,
                             save_virgin=True)

    ### Launch search algorithm ##############################################

    if not GLOBALS.train_generate_only:

        t = time.perf_counter()

        bn, ctx = GLOBALS.app_core_function(bn)

        logger.info(f"Search time: {time.perf_counter() - t}s")

        logger.info(ctx)

        savepath = GLOBALS.bn_model_path / 'behavioural_bn_{date}.json'.format(
            mode=GLOBALS.app['mode'], date=FROZEN_DATE)

        write_json(bn, savepath)

        logger.info(f'Output model saved to {savepath}.')

    logger.info('Closing...')

    logger.flush()

    exit(1)
Пример #7
0
        futils.get_dir(GLOBALS.app_output_path, create_if_dir=True) /
        '{key}_{date}.log'.format(
            key=GLOBALS.app['mode'],
            date=futils.FROZEN_DATE,
        ))

    ### Load Test Model(s) from Template paths ####################################

    files, bns = collect_bn_models(GLOBALS.bn_model_path)

    ### Test ######################################################################
    t = time.perf_counter()

    for i in range(GLOBALS.test_n_instances):

        logger.info(f'Test instance n°{i}')

        instance_data = GLOBALS.app_core_function(bns)

        for k, test_data in instance_data.items():

            name = futils.gen_fname(
                futils.get_simple_fname(files[k].name,
                                        futils.FNAME_PATTERN,
                                        uniqueness=2),
                template='rtest_data_{name}' + f'_in{i}.json',
            )

            test_data.to_json(GLOBALS.test_data_path / name,
                              default_handler=jsonrepr)
Пример #8
0
        if not isinstance(tTau, dict):
            GLOBALS.slct_target_transition_tau = {
                "a0": {"a0": tTau, "a1": tTau},
                "a1": {"a0": tTau, "a1": tTau}
            }

        GLOBALS.slct_noise_rho = nRho
        GLOBALS.slct_target_n_attractors = aN
        GLOBALS.slct_input_steps_phi = iPhi
        
        t = time.perf_counter()

        bn = GLOBALS.app_core_function(mapper)

        logger.info(time.perf_counter() - t)

        while bn is None or not bn.attractors_input_map or None in bn.attractors_input_map:
            logger.info('Failure. Retrying...')
            t = time.perf_counter()
            bn = GLOBALS.app_core_function()
            logger.info(time.perf_counter() - t)

        logger.info(dict(**bn.attractors_input_map))
        logger.info(dict(**bn.atm.dtableau))
        logger.info(dict(**bn.atm.dattractors))

        path = FOLDER / f'selective_bn_{iso8106(ms=3)}.json'

        bnjson = bn.to_json()