Пример #1
0
def test_make_DAG():
    edges = [('Cloudy', 'Sprinkler')]
    DAG = bn.make_DAG(edges)
    # TEST 1
    assert 'pgmpy.models.BayesianModel.BayesianModel' in str(type(
        DAG['model']))
    # TEST 2
    cpt_cloudy = TabularCPD(variable='Cloudy',
                            variable_card=2,
                            values=[[0.3], [0.7]])
    cpt_sprinkler = TabularCPD(variable='Sprinkler',
                               variable_card=2,
                               values=[[0.4, 0.9], [0.6, 0.1]],
                               evidence=['Cloudy'],
                               evidence_card=[2])
    assert bn.make_DAG(DAG, CPD=[cpt_cloudy, cpt_sprinkler], checkmodel=True)
Пример #2
0
    'pop scale', 'label'
]]
print(f"all data size:\t{df_final.size}")
print(f"all data num of successes:\t{df_final['label'].sum()}")

df_train, df_test = train_test_split(df_final, test_size=0.2, random_state=0)
print(f"train size: \t{df_train.size}")
print(f"train num of succes\t{df_train['label'].sum()}")

edges = [('top director', 'budget scale'), ('top director', 'week_num'),
         ('top director', 'main genre'), ('week_num', 'pop scale'),
         ('budget scale', 'label'), ('main genre', 'top actor'),
         ('top actor', 'pop scale'), ('label', 'pop scale')]

# Make the actual Bayesian DAG
DAG = bnlearn.make_DAG(edges)

# DAG is stored in adjacency matrix
print(DAG['adjmat'])

# No CPDs are in the DAG. Lets see what happens if we print it.
bnlearn.print_CPD(DAG)

# # Plot DAG. Note that it can be differently orientated if you re-make the plot.
# print("plotting")
# bnlearn.plot(DAG)
# print("stop plot")

# Parameter learning on the user-defined DAG and input data
DAG = bnlearn.parameter_learning.fit(DAG, df_train)
Пример #3
0
# %% Inference using custom DAG
import bnlearn as bn
# Load asia DAG
df = bn.import_example('asia')
# from tabulate import tabulate
# print(tabulate(df.head(), tablefmt="grid", headers="keys"))
print(df)

edges = [('smoke', 'lung'), ('smoke', 'bronc'), ('lung', 'xray'),
         ('bronc', 'xray')]

# edges = [('smoke', 'xray'),
# ('bronc', 'lung')]

# Make the actual Bayesian DAG
DAG = bn.make_DAG(edges)
# Plot the DAG
bn.plot(DAG)
# Print the CPDs
bn.print_CPD(DAG)

# Learn its parameters from data and perform the inference.
DAG = bn.parameter_learning.fit(DAG, df)
# Print the CPDs
bn.print_CPD(DAG)

# Make inference
q1 = bn.inference.fit(DAG, variables=['lung'], evidence={'smoke': 1})
q2 = bn.inference.fit(DAG, variables=['bronc'], evidence={'smoke': 1})
q3 = bn.inference.fit(DAG,
                      variables=['lung'],