def getStringSummaryOfPrior(Prior):
    ''' Create string summarizing prior information

    Returns
    -------
    s : str
    '''
    msg = 'Gaussian-Wishart joint prior on regression weights/prec\n'
    msg += "Wishart on precision scalar\n"
    msg += "     pnu = %.3g\n" % (Prior.pnu)
    msg += "    ptau = %.3g\n" % (Prior.ptau)
    msg += "    mean = %.3g\n" % (E_d(pnu=Prior.pnu, ptau=Prior.ptau))
    w_E_str = np2flatstr(Prior.w_E[:2], fmt='% .2g')
    P_EE_str = np2flatstr(np.diag(Prior.P_EE)[:2], fmt='% .2g')
    msg += "Gaussian on regression weight vector\n"
    msg += "          mean = %s\n" % w_E_str
    msg += "    diag[prec] = %s\n" % P_EE_str
    return msg
Пример #2
0
def getStringSummaryOfPrior(Prior):
    ''' Get human-readable summary of specific prior

    Returns
    -------
    s : str
    '''
    if Prior.D > 2:
        sfx = ' ...'
    else:
        sfx = ''

    msg = 'independent Gauss-Wishart prior on each dimension\n'
    msg += "Wishart params \n"
    msg += "  nu = %.3g %s\n" % (Prior.nu, sfx)
    msg += "beta = %s %s\n" % (np2flatstr(Prior.beta[:2]), sfx)
    msg += "Expectations\n"
    msg += 'E[  mean[k]] = \n%s%s\n' % (np2flatstr(Prior.m[:2]), sfx)
    msg += 'E[ covar[k]] = \n'
    S = E_CovMat(nu=Prior.nu, beta=Prior.beta[:2])
    msg += str(S) + sfx
    msg = msg.replace('\n', '\n  ')
    return msg