def plotDocUsageForProposal(docUsageByUID, savefilename=None, **kwargs): ''' Make trace plot of doc usage for each component. ''' pylab.figure() L = 0 maxVal = 0 for k, uid in enumerate(docUsageByUID): ys = np.asarray(docUsageByUID[uid]) xs = np.arange(0, ys.size) if k < 6: # only a few labels fit well on a legend pylab.plot(xs, ys, label=uid) else: pylab.plot(xs, ys) L = np.maximum(L, ys.size) maxVal = np.maximum(maxVal, ys.max()) # Use big chunk of left-hand side of plot for legend display xlims = np.asarray([-0.75*L, L-0.5]) pylab.xlim(xlims) pylab.xticks(np.arange(1, L)) pylab.ylim([0, 1.1*maxVal]) pylab.xlabel('num proposal steps') pylab.ylabel('num docs using each comp') pylab.legend(loc='upper left', fontsize=12) pylab.subplots_adjust(left=0.2) if savefilename is not None: pylab.savefig(savefilename, pad_inches=0) pylab.close('all')
def makePlot(muVals=[(0.01,0), (0.1,0), (1,0), (10,0)], doCorrection=1): pylab.figure() xgrid = np.linspace(-8, 8, 2000) pylab.hold('on') pylab.plot(xgrid, np.zeros_like(xgrid), ':', alpha=0.2) for mu1, mu2 in muVals: ygrid = calcBregDiv_Gauss1D(xgrid, mu1, mu2, doCorrection=doCorrection) print ygrid.min() pylab.plot(xgrid, ygrid, label='mu1=% 6.2f mu2=% 6.2f' % (mu1, mu2)) pylab.legend(loc='lower right') pylab.xlim([xgrid.min(), xgrid.max()]) pylab.ylim([xgrid.min(), xgrid.max()]) pylab.xlabel('x') if doCorrection: pylab.ylabel('D(x, \mu) + correction') else: pylab.ylabel('D(x, \mu)')
def makePlot(muVals=[0.01, 0.1, 1, 10], B=1e-10, nu=2, justMahalTerm=0): pylab.figure() xgrid = np.linspace(0, 8, 2000) pylab.hold('on') for mu in muVals: ygrid = calcBregDiv_ZeroMean(xgrid, mu, B=B, nu=nu, justMahalTerm=justMahalTerm) pylab.plot(xgrid, ygrid, linewidth=2, label='\mu=%6.2f' % (mu)) pylab.legend(loc='upper right') pylab.xlim([-0.1, xgrid.max()]) pylab.ylim([-0.1, xgrid.max()]) pylab.xlabel('x') pylab.ylabel('D(x, \mu)') pylab.title('B=%s nu=%s' % (str(B), str(nu)))
def plotELBOtermsForProposal( curLdict, propLdictList, xs=None, ymin=-0.5, ymax=0.5, savefilename=None, **kwargs): ''' Create trace plot of ELBO gain/loss relative to current model. ''' pylab.figure() L = len(propLdictList) if xs is None: xs = np.arange(0, L) legendKeys = [] for key in curLdict: if key.count('_') == 0: legendKeys.append(key) for key in legendKeys: if key.count('total'): linewidth= 4 alpha = 1 style = '-' else: linewidth = 3 alpha = 0.5 style = '--' ys = np.asarray([propLdictList[i][key] for i in range(L)]) ys -= curLdict[key] pylab.plot(xs, ys, style, color=_getLineColorFromELBOKey(key), linewidth=linewidth, alpha=alpha, label=key) L = L + 1 xlims = np.asarray([-0.75*L, L-0.5]) pylab.xlim(xlims) pylab.xticks(xs) pylab.plot(xlims, np.zeros_like(xlims), 'k:') pylab.xlabel('num proposal steps') pylab.ylabel('L gain (prop - current)') pylab.legend(loc='lower left', fontsize=12) pylab.subplots_adjust(left=0.2) if savefilename is not None: pylab.savefig(savefilename, pad_inches=0) pylab.close('all')
def plotSingleLineAcrossJobsByXVar(jpathPattern, label='', xvar=None, xvals=None, xlabel=None, yvar='evidence', lineStyle='.-', taskids='all', lineID=0, lvar='', **kwargs): ''' Create line plot in current figure for job matching the pattern Iterates over each xval in provided list of values. Each one corresponds to a single saved job. Post Condition -------------- Current axes have one line added. ''' prefixfilepath = os.path.sep.join(jpathPattern.split(os.path.sep)[:-1]) PPListMap = makePPListMapFromJPattern(jpathPattern) if xvals is None: xvals = PPListMap[xvar] xs = np.zeros(len(xvals)) ys = np.zeros(len(xvals)) jpathList = makeListOfJPatternsWithSpecificVals( PPListMap, prefixfilepath=prefixfilepath, key=xvar, vals=xvals, **kwargs) plotargs = copy.deepcopy(DefaultLinePlotKwArgs) # Plot all tasks as faint points with no connections for i, jobpath in enumerate(jpathList): if not os.path.exists(jobpath): raise ValueError("PATH NOT FOUND: %s" % (jobpath)) x = float(xvals[i]) for key in plotargs: if key in kwargs: plotargs[key] = kwargs[key] plotargs['markeredgecolor'] = plotargs['color'] alltaskids = BNPYArgParser.parse_task_ids(jobpath, taskids) for tid in alltaskids: y = loadYValFromDisk(jobpath, tid, yvar=yvar) pylab.plot(x, y, '.', **plotargs) # Plot top-ranked tasks as solid points connected by line for i, jobpath in enumerate(jpathList): rankTasksForSingleJobOnDisk(os.path.join(jobpath)) x = float(xvals[i]) y = loadYValFromDisk(jobpath, '.best', yvar=yvar) assert isinstance(x, float) assert isinstance(y, float) xs[i] = x ys[i] = y plotargs = copy.deepcopy(DefaultLinePlotKwArgs) for key in plotargs: if key in kwargs: plotargs[key] = kwargs[key] plotargs['markeredgecolor'] = plotargs['color'] plotargs['label'] = label pylab.plot(xs, ys, lineStyle, **plotargs) if lineID == 0: if xlabel is None: xlabel = xvar pylab.xlabel(xlabel) pylab.ylabel(LabelMap[yvar])
def plot_all_tasks_for_job(jobpath, label, taskids=None, lineType='.-', spreadLineType='--', color=None, yvar='avgLikScore', xvar='laps', markersize=10, linewidth=2, minLap=0, showFinalPt=0, fileSuffix='PredLik.mat', xjitter=None, prefix='predlik', colorID=0, **kwargs): ''' Create line plot in current figure for each task/run of jobpath ''' if not os.path.exists(jobpath): print('PATH NOT FOUND', jobpath) return None if not yvar.startswith('avg') and yvar.count('Kactive') == 0: yvar = 'avg' + yvar if not yvar.endswith('Score') and yvar.count('Kactive') == 0: yvar = yvar + 'Score' if color is None: color = Colors[colorID % len(Colors)] taskids = BNPYArgParser.parse_task_ids(jobpath, taskids) for tt, taskid in enumerate(taskids): taskoutpath = os.path.join(jobpath, taskid) hpaths = glob.glob(os.path.join(taskoutpath, '*' + fileSuffix)) txtpaths = glob.glob(os.path.join(taskoutpath, 'predlik-*.txt')) ys_hi = None ys_lo = None if len(txtpaths) > 0: if fileSuffix.endswith('.txt'): suffix = '-' + fileSuffix else: suffix = '.txt' if xvar.count('lap'): xs = np.loadtxt( os.path.join(taskoutpath, prefix + '-lapTrain.txt')) elif xvar.count('K'): xs = np.loadtxt(os.path.join(taskoutpath, prefix + '-K.txt')) elif xvar.count('time'): xs = np.loadtxt(os.path.join( taskoutpath, prefix + '-timeTrain.txt')) else: raise ValueError("Unrecognized xvar: " + xvar) if yvar.count('Kactive') and not yvar.count('Percentile'): ys = np.loadtxt(os.path.join(taskoutpath, prefix + '-' + yvar + 'Percentile50.txt')) ys_lo = np.loadtxt(os.path.join(taskoutpath, prefix + '-' + yvar + 'Percentile10.txt')) ys_hi = np.loadtxt(os.path.join(taskoutpath, prefix + '-' + yvar + 'Percentile90.txt')) else: ys = np.loadtxt( os.path.join(taskoutpath, prefix + '-' + yvar + suffix)) if minLap > 0 and taskoutpath.count('fix'): mask = laps > minLap xs = xs[mask] ys = ys[mask] elif len(hpaths) > 0: hpaths.sort() basenames = [x.split(os.path.sep)[-1] for x in hpaths] xs = np.asarray([float(x[3:11]) for x in basenames]) ys = np.zeros_like(xs) for ii, hpath in enumerate(hpaths): MatVars = scipy.io.loadmat(hpath) ys[ii] = float(MatVars['avgPredLL']) else: raise ValueError( 'Pred Lik data unavailable for job\n' + taskoutpath) plotargs = dict(markersize=markersize, linewidth=linewidth, label=None, color=color, markeredgecolor=color, ) plotargs.update(kwargs) if tt == 0: plotargs['label'] = label if xjitter is not None: xs = xs + xjitter pylab.plot(xs, ys, lineType, **plotargs) if ys_lo is not None: del plotargs['label'] pylab.plot(xs, ys_lo, spreadLineType, **plotargs) pylab.plot(xs, ys_hi, spreadLineType, **plotargs) if showFinalPt: pylab.plot(xs[-1], ys[-1], '.', **plotargs) pylab.xlabel(XLabelMap[xvar]) pylab.ylabel(YLabelMap[yvar])
def plot_all_tasks_for_job(jobpath, label, taskids=None, color=None, colorID=0, density=2, yvar='evidence', markersize=10, linewidth=2, linestyle='-', drawLineToXMax=None, showOnlyAfterLap=0, xvar='laps', **kwargs): ''' Create line plot in current figure for each task/run of jobpath ''' if not os.path.exists(jobpath): if not jobpath.startswith(os.path.sep): jobpath_tmp = os.path.join(os.environ['BNPYOUTDIR'], jobpath) if not os.path.exists(jobpath_tmp): raise ValueError("PATH NOT FOUND: %s" % (jobpath)) jobpath = jobpath_tmp if color is None: color = Colors[colorID % len(Colors)] taskids = BNPYArgParser.parse_task_ids(jobpath, taskids) if yvar == 'hamming-distance': yspfile = os.path.join(jobpath, taskids[0], yvar + '-saved-params.txt') if xvar == 'laps' and os.path.isfile(yspfile): xvar = 'laps-saved-params' for tt, taskid in enumerate(taskids): xs = None ys = None laps = None try: var_ext = '' ytxtfile = os.path.join(jobpath, taskid, yvar + '.txt') if not os.path.isfile(ytxtfile): var_ext = '-saved-params' ytxtfile = os.path.join(jobpath, taskid, yvar + var_ext + '.txt') ys = np.loadtxt(ytxtfile) if ytxtfile.count('saved-params'): laptxtfile = os.path.join(jobpath, taskid, 'laps-saved-params.txt') else: laptxtfile = os.path.join(jobpath, taskid, 'laps.txt') except IOError as e: # TODO: when is this code needed? # xs, ys = loadXYFromTopicModelFiles(jobpath, taskid) try: if isinstance(xs, np.ndarray) and yvar.count('Keff'): ys = loadKeffForTask(os.path.join(jobpath, taskid), **kwargs) assert xs.size == ys.size else: # Heldout metrics xs, ys = loadXYFromTopicModelSummaryFiles(jobpath, taskid, xvar=xvar, yvar=yvar) if showOnlyAfterLap and showOnlyAfterLap > 0: laps, _ = loadXYFromTopicModelSummaryFiles(jobpath, taskid, xvar='laps', yvar=yvar) except ValueError: try: xs, ys = loadXYFromTopicModelSummaryFiles(jobpath, taskid) except ValueError: raise e if yvar == 'hamming-distance' or yvar == 'Keff': if xvar == 'laps-saved-params': # fix off-by-one error, if we save an extra dist on final lap if xs.size == ys.size - 1: ys = ys[:-1] elif ys.size == xs.size - 1: xs = xs[:-1] # fix off-by-one error, if we quit early elif xs.size != ys.size: # Try to subsample both time series at laps where they # intersect laps_x = np.loadtxt(os.path.join(jobpath, taskid, 'laps.txt')) laps_y = np.loadtxt( os.path.join(jobpath, taskid, 'laps-saved-params.txt')) assert xs.size == laps_x.size if ys.size == laps_y.size - 1: laps_y = laps_y[:-1] xs = xs[np.in1d(laps_x, laps_y)] ys = ys[np.in1d(laps_y, laps_x)] if xs.size != ys.size: raise ValueError('Dimension mismatch. len(xs)=%d, len(ys)=%d' % (xs.size, ys.size)) # Cleanup laps data. Verify that it is sorted, with no collisions. if xvar == 'laps': diff = xs[1:] - xs[:-1] goodIDs = np.flatnonzero(diff >= 0) if len(goodIDs) < xs.size - 1: print( 'WARNING: looks like multiple runs writing to this file!') print(jobpath) print('Task: ', taskid) print(len(goodIDs), xs.size - 1) xs = np.hstack([xs[goodIDs], xs[-1]]) ys = np.hstack([ys[goodIDs], ys[-1]]) if xvar == 'laps' and yvar == 'evidence': mask = xs >= 1.0 xs = xs[mask] ys = ys[mask] elif showOnlyAfterLap: # print "Filtering for data recorded at lap >= %s" % ( # showOnlyAfterLap) if laps is None: laps = np.loadtxt(laptxtfile) mask = laps >= showOnlyAfterLap xs = xs[mask] ys = ys[mask] # Force plot density (data points per lap) to desired specification # This avoids making plots that have huge file sizes, # due to too much content in the given display space if xvar == 'laps' and xs.size > 20 and np.sum(xs > 5) > 10: if (xs[-1] - xs[9]) != 0: curDensity = (xs.size - 10) / (xs[-1] - xs[9]) else: curDensity = density while curDensity > density and xs.size > 11: # Thin xs and ys data by a factor of 2 # while preserving the first 10 data points xs = np.hstack([xs[:10], xs[10::2]]) ys = np.hstack([ys[:10], ys[10::2]]) curDensity = (xs.size - 10) / (xs[-1] - xs[9]) plotargs = dict(markersize=markersize, linewidth=linewidth, linestyle=linestyle, label=None, color=color, markeredgecolor=color) for key in kwargs: if key in plotargs: plotargs[key] = kwargs[key] if tt == 0: plotargs['label'] = label pylab.plot(xs, ys, **plotargs) if drawLineToXMax: xs_dashed = np.asarray([xs[-1], drawLineToXMax]) ys_dashed = np.asarray([ys[-1], ys[-1]]) plotargs['label'] = None pylab.plot(xs_dashed, ys_dashed, '--', **plotargs) pylab.xlabel(LabelMap[xvar]) if yvar in LabelMap: yLabelStr = LabelMap[yvar] if yvar == 'Keff' and 'effCountThr' in kwargs: effCountThr = float(kwargs['effCountThr']) yLabelStr = yLabelStr + ' > %s' % (str(effCountThr)) pylab.ylabel(yLabelStr)