def cartesian2logpolar(img, center=None, final_radius=None, initial_radius = None, phase_width = 3000):
    """
    See also:
        https://en.wikipedia.org/wiki/Log-polar_coordinates
    """
    if center is None:
        center=(img.shape[0]/2,img.shape[1]/2)
    if final_radius is None:
        final_radius=max(img.shape[0],img.shape[1])/2
    if initial_radius is None:
        initial_radius = 0
    phase_width=img.shape[0]/2

    theta , R = np.meshgrid(np.linspace(0, 2*np.pi, phase_width),
        np.arange(initial_radius, final_radius))
    Xcart  = np.exp(R)  * np.cos(theta) + center[0]
    Ycart  = np.exp(R)  * np.sin(theta) + center[1]
    Xcart = Xcart.astype(int)
    Ycart = Ycart.astype(int)

    if img.ndim ==3:
        polar_img = img[Ycart,Xcart,:]
        polar_img = np.reshape(polar_img,(final_radius-initial_radius,phase_width,img.shape[-1]))
    else:
        polar_img = img[Ycart,Xcart]
        polar_img = np.reshape(polar_img,(final_radius-initial_radius,phase_width))
    return polar_img
def marble(size=(256,256),xPeriod=3.0,yPeriod=10.0,turbPower=0.8,turbSize=None,seed=None):
    """
    Generate a marble texture akin to blender and others

    :param xPeriod: defines repetition of marble lines in x direction
    :param yPeriod: defines repetition of marble lines in y direction
    :param turbPower: add twists and swirls (when turbPower==0  it becomes a normal sine pattern)
    :param turbSize: initial size of the turbulence default is max(w,h)/10

    NOTE:
        xPeriod and yPeriod together define the angle of the lines
        xPeriod and yPeriod both 0 then it becomes a normal clouds or turbulence pattern

    Optimized version of:
        https://lodev.org/cgtutor/randomnoise.html
    """
    w,h=size
    turb=turbulence(size,turbSize,seed=seed)*turbPower
    # determine where the pixels will cycle
    cycleValue=np.ndarray((w,h))
    for y in range(h):
        for x in range(w):
            cycleValue[x,y]=(x*xPeriod/w)+(y*yPeriod/h)
    # add in the turbulence and then last of all, make it a sinewave
    img=np.abs(np.sin((cycleValue+turb)*math.pi))
    return img
def cartesian2polar(img, center=None, final_radius=None, initial_radius = None, phase_width = 3000):
    """
    Comes from:
        https://stackoverflow.com/questions/9924135/fast-cartesian-to-polar-to-cartesian-in-python
    """
    img=numpyArray(img)
    if center is None:
        center=(img.shape[0]/2,img.shape[1]/2)
    if final_radius is None:
        final_radius=max(img.shape[0],img.shape[1])/2
    if initial_radius is None:
        initial_radius = 0
    phase_width=img.shape[0]/2

    theta , R = np.meshgrid(np.linspace(0, 2*np.pi, phase_width),
        np.arange(initial_radius, final_radius))
    Xcart  = R  * np.cos(theta) + center[0]
    Ycart  = R  * np.sin(theta) + center[1]
    Xcart = Xcart.astype(int)
    Ycart = Ycart.astype(int)

    if img.ndim ==3:
        polar_img = img[Ycart,Xcart,:]
        polar_img = np.reshape(polar_img,(final_radius-initial_radius,phase_width,img.shape[-1]))
    else:
        polar_img = img[Ycart,Xcart]
        polar_img = np.reshape(polar_img,(final_radius-initial_radius,phase_width))
    return polar_img
def woodRings(size=(256,256),xyPeriod=12.0,turbPower=0.15,turbSize=32.0,seed=None):
    """
    Draw wood rings

    :param xyPeriod: number of rings
    :param turbPower: makes twists
    :param turbSize: # initial size of the turbulence

    Optimized version of:
        https://lodev.org/cgtutor/randomnoise.html
    """
    turb=turbulence(size,turbSize,seed=seed)*turbPower
    dc=normalize(deltaC(size,magnitude=True))
    img = np.abs(np.sin(xyPeriod * (dc+turb) * math.pi))
    return normalize(img)
def clock2(size=(256,256),waveform="sine",frequency=(10,10),noise=0.2,noiseBasis="perlin",
    noiseOctaves=4,noiseSoften=0.0,direction=0,invert=False,seed=None):
    """
    a rotary clockface gradient
    """
    noiseSize=max(size)/8 # TODO: pass this value in somehow
    turb=turbulence(size,noiseSize,seed=seed)*noise
    #points=np.ndarray((int(size[0]),int(size[1])))
    angle=0.75-direction/360.0
    dc=deltaC(size)
    img=np.arctan2(dc[:,:,0],dc[:,:,1])/math.pi
    img=np.abs(np.sin((((normalize(img)+angle)%1.0)+turb)*math.pi))
    img=normalize(img)
    if invert:
        img=1.0-img
    return img
def waveImage(size=(256,256),repeats=2,angle=0,wave='sine',radial=False):
    """
    create an image based on a sine, saw, or triangle wave function
    """
    ret=np.zeros(size)
    if radial:
        raise NotImplementedError() # TODO: Implement radial wave images
    else:
        twopi=2*pi
        thetas=np.arange(size[0])*float(repeats)/size[0]*twopi
        if wave=='sine':
            ret[:,:]=0.5+0.5*np.sin(thetas)
        elif wave=='saw':
            n=np.round(thetas/twopi)
            thetas-=n*twopi
            ret[:,:]=np.where(thetas<0,thetas+twopi,thetas)/twopi
        elif wave=='triangle':
            ret[:,:]=1.0-2.0*np.abs(np.floor((thetas*(1.0/twopi))+0.5)-(thetas*(1.0/twopi)))
    return ret
Пример #7
0
stripes = 37  # number of stripes per wave
N = 512  # image size in pixels
ite = 30  # iterations
phases = np.arange(0, 2 * pi, 2 * pi / ite)

image = np.empty((N, N))

d = np.arange(-N / 2, N / 2, dtype=np.float64)

xv, yv = np.meshgrid(d, d)
theta = np.arctan2(yv, xv)
r = np.log(np.sqrt(xv * xv + yv * yv))
r[np.isinf(r) == True] = 0

tcos = theta * np.cos(np.arange(0, pi, pi / k))[:, np.newaxis, np.newaxis]
rsin = r * np.sin(np.arange(0, pi, pi / k))[:, np.newaxis, np.newaxis]
inner = (tcos - rsin) * stripes

cinner = np.cos(inner)
sinner = np.sin(inner)

i = 0
for phase in phases:
    image[:] = np.sum(cinner * np.cos(phase) - sinner * np.sin(phase),
                      axis=0) + k
    plt.imshow(image.copy2numpy(), cmap="RdGy")
    fig.savefig("quasi-{:03d}.png".format(i),
                bbox_inches='tight',
                pad_inches=0)
    i += 1
 def sin(x):
     return np.abs(np.sin(x*math.pi))