def test_basic(self) -> None: mapper = bmm.LinearColorMapper() check_properties_existence( mapper, [ "palette", "domain", "low", "high", "low_color", "high_color", "nan_color" ], )
vocab = cv.get_feature_names() for i, topic_dist in enumerate(topic_word): topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words + 1):-1] # get! topic_summaries.append(' '.join(topic_words)) # append! print(topic_summaries) dfb = pd.DataFrame() dfb['content'] = df[idx_max].text.values.tolist() dfb['topic_key'] = np.array(lda_keys) dfb['X_tsne'] = tsne_lda[:, 0] dfb['Y_tsne'] = tsne_lda[:, 1] source = ColumnDataSource(dfb) color_mapper = mappers.LinearColorMapper(palette=palettes.Category20_20, low=dfb.topic_key.min(), high=dfb.topic_key.max()) p = figure(plot_width=1200, plot_height=1000, title='t-SNE Lord of the Rings Topics', x_axis_label='X-coord', y_axis_label='Y-coord', tools="pan,wheel_zoom,box_zoom,reset,hover,previewsave", toolbar_location='above', min_border=1) p.scatter(x='X_tsne', y='Y_tsne', color={ 'field': 'topic_key', 'transform': color_mapper