Пример #1
0
def test_editable_changes_data(output_file_url, selenium):

    # Make plot and add a taptool callback that generates an alert

    source = ColumnDataSource({'values': [1, 2]})
    source.callback = CustomJS(code='alert(cb_obj.data.values)')
    column = TableColumn(field='values', title='values', editor=IntEditor())
    data_table = DataTable(source=source,
                           columns=[column],
                           editable=True,
                           width=600)

    # Save the plot and start the test
    save(data_table)
    selenium.get(output_file_url)
    assert has_no_console_errors(selenium)

    # Resize the page so that the table displays correctly
    selenium.set_window_size(width=800, height=800)

    # Click row_1 (which triggers first alert)
    row_1_cell = selenium.find_element_by_css_selector(
        '.grid-canvas .slick-row:first-child .r1')
    row_1_cell.click()
    alert = selenium.switch_to_alert()
    assert alert.text == '1,2'
    alert.dismiss()

    # Now double click, enter the text 33
    actions = ActionChains(selenium)
    row_1_cell = selenium.find_element_by_css_selector(
        '.grid-canvas .slick-row:first-child .r1')
    actions.move_to_element(row_1_cell)
    actions.double_click()
    actions.send_keys(u"33\ue007")  # After the backslash is ENTER key
    actions.perform()

    # Click row_2 (which triggers alert again so we can inspect the data)
    row_2_cell = selenium.find_element_by_css_selector(
        '.grid-canvas .slick-row:nth-child(2) .r1')
    row_2_cell.click()
    alert = selenium.switch_to_alert()
    assert alert.text == '33,2'
Пример #2
0
    def __columns(self):
        width = self.__theme.width
        fmt = DpxNumberFormatter(format=self.__theme.zformat,
                                 text_align='right')
        dim = self.__tasks.instrumentdim

        def _rep(ind):
            title = self.__theme.columns[ind]
            if 'm)' in title:
                title = title.split('(')[0] + f' ({dim})'
            return title

        return [
            TableColumn(field='bases',
                        title=_rep(0),
                        editor=IntEditor(),
                        width=width // 2),
            TableColumn(field='z',
                        title=_rep(1),
                        editor=NumberEditor(step=self.__theme.zstep),
                        formatter=fmt,
                        width=width // 2)
        ]
Пример #3
0
source = ColumnDataSource(data=mpg)
columns = [
    TableColumn(field="manufacturer",
                title="Manufacturer",
                editor=SelectEditor(options=sorted(mpg["manufacturer"].unique())),
                formatter=StringFormatter(font_style="bold")),
    TableColumn(field="model",
                title="Model",
                editor=StringEditor(completions=sorted(mpg["model"].unique()))),
    TableColumn(field="displ",
                title="Displacement",
                editor=NumberEditor(step=0.1),
                formatter=NumberFormatter(format="0.0")),
    TableColumn(field="year",
                title="Year",
                editor=IntEditor()),
    TableColumn(field="cyl",
                title="Cylinders",
                editor=IntEditor()),
    TableColumn(field="trans",
                title="Transmission",
                editor=SelectEditor(options=sorted(mpg["trans"].unique()))),
    TableColumn(field="drv",
                title="Drive",
                editor=SelectEditor(options=sorted(mpg["drv"].unique()))),
    TableColumn(field="class",
                title="Class",
                editor=SelectEditor(options=sorted(mpg["class"].unique()))),
    TableColumn(field="cty",
                title="City MPG",
                editor=IntEditor()),
Пример #4
0
source = ColumnDataSource(data=mpg)
columns = [
    TableColumn(
        field="manufacturer",
        title="Manufacturer",
        editor=SelectEditor(options=sorted(mpg["manufacturer"].unique())),
        formatter=StringFormatter(font_style="bold")),
    TableColumn(
        field="model",
        title="Model",
        editor=StringEditor(completions=sorted(mpg["model"].unique()))),
    TableColumn(field="displ",
                title="Displacement",
                editor=NumberEditor(step=0.1),
                formatter=NumberFormatter(format="0.0")),
    TableColumn(field="year", title="Year", editor=IntEditor()),
    TableColumn(field="cyl", title="Cylinders", editor=IntEditor()),
    TableColumn(field="trans",
                title="Transmission",
                editor=SelectEditor(options=sorted(mpg["trans"].unique()))),
    TableColumn(field="drv",
                title="Drive",
                editor=SelectEditor(options=sorted(mpg["drv"].unique()))),
    TableColumn(field="class",
                title="Class",
                editor=SelectEditor(options=sorted(mpg["class"].unique()))),
    TableColumn(field="cty", title="City MPG", editor=IntEditor()),
    TableColumn(field="hwy", title="Highway MPG", editor=IntEditor()),
]
table = DataTable(source=source, columns=columns, editable=True, width=800)
Пример #5
0
def create(palm):
    doc = curdoc()

    # Calibration averaged waveforms per photon energy
    waveform_plot = Plot(
        title=Title(text="eTOF calibration waveforms"),
        x_range=DataRange1d(),
        y_range=DataRange1d(),
        plot_height=760,
        plot_width=PLOT_CANVAS_WIDTH,
        toolbar_location="right",
    )

    # ---- tools
    waveform_plot.toolbar.logo = None
    waveform_plot_hovertool = HoverTool(
        tooltips=[("energy, eV", "@en"), ("eTOF bin", "$x{0.}")])

    waveform_plot.add_tools(PanTool(), BoxZoomTool(), WheelZoomTool(),
                            ResetTool(), waveform_plot_hovertool)

    # ---- axes
    waveform_plot.add_layout(LinearAxis(axis_label="eTOF time bin"),
                             place="below")
    waveform_plot.add_layout(LinearAxis(axis_label="Intensity",
                                        major_label_orientation="vertical"),
                             place="left")

    # ---- grid lines
    waveform_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    waveform_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- multiline glyphs
    waveform_ref_source = ColumnDataSource(dict(xs=[], ys=[], en=[]))
    waveform_ref_multiline = waveform_plot.add_glyph(
        waveform_ref_source, MultiLine(xs="xs", ys="ys", line_color="blue"))

    waveform_str_source = ColumnDataSource(dict(xs=[], ys=[], en=[]))
    waveform_str_multiline = waveform_plot.add_glyph(
        waveform_str_source, MultiLine(xs="xs", ys="ys", line_color="red"))

    # ---- legend
    waveform_plot.add_layout(
        Legend(items=[(
            "reference",
            [waveform_ref_multiline]), ("streaked",
                                        [waveform_str_multiline])]))
    waveform_plot.legend.click_policy = "hide"

    # ---- vertical spans
    photon_peak_ref_span = Span(location=0,
                                dimension="height",
                                line_dash="dashed",
                                line_color="blue")
    photon_peak_str_span = Span(location=0,
                                dimension="height",
                                line_dash="dashed",
                                line_color="red")
    waveform_plot.add_layout(photon_peak_ref_span)
    waveform_plot.add_layout(photon_peak_str_span)

    # Calibration fit plot
    fit_plot = Plot(
        title=Title(text="eTOF calibration fit"),
        x_range=DataRange1d(),
        y_range=DataRange1d(),
        plot_height=PLOT_CANVAS_HEIGHT,
        plot_width=PLOT_CANVAS_WIDTH,
        toolbar_location="right",
    )

    # ---- tools
    fit_plot.toolbar.logo = None
    fit_plot.add_tools(PanTool(), BoxZoomTool(), WheelZoomTool(), ResetTool())

    # ---- axes
    fit_plot.add_layout(LinearAxis(axis_label="Photoelectron peak shift"),
                        place="below")
    fit_plot.add_layout(LinearAxis(axis_label="Photon energy, eV",
                                   major_label_orientation="vertical"),
                        place="left")

    # ---- grid lines
    fit_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    fit_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- circle glyphs
    fit_ref_circle_source = ColumnDataSource(dict(x=[], y=[]))
    fit_ref_circle = fit_plot.add_glyph(
        fit_ref_circle_source, Circle(x="x", y="y", line_color="blue"))
    fit_str_circle_source = ColumnDataSource(dict(x=[], y=[]))
    fit_str_circle = fit_plot.add_glyph(fit_str_circle_source,
                                        Circle(x="x", y="y", line_color="red"))

    # ---- line glyphs
    fit_ref_line_source = ColumnDataSource(dict(x=[], y=[]))
    fit_ref_line = fit_plot.add_glyph(fit_ref_line_source,
                                      Line(x="x", y="y", line_color="blue"))
    fit_str_line_source = ColumnDataSource(dict(x=[], y=[]))
    fit_str_line = fit_plot.add_glyph(fit_str_line_source,
                                      Line(x="x", y="y", line_color="red"))

    # ---- legend
    fit_plot.add_layout(
        Legend(items=[
            ("reference", [fit_ref_circle, fit_ref_line]),
            ("streaked", [fit_str_circle, fit_str_line]),
        ]))
    fit_plot.legend.click_policy = "hide"

    # Calibration results datatables
    def datatable_ref_source_callback(_attr, _old_value, new_value):
        for en, ps, use in zip(new_value["energy"], new_value["peak_pos_ref"],
                               new_value["use_in_fit"]):
            palm.etofs["0"].calib_data.loc[
                en, "calib_tpeak"] = ps if ps != "NaN" else np.nan
            palm.etofs["0"].calib_data.loc[en, "use_in_fit"] = use

        calib_res = {}
        for etof_key in palm.etofs:
            calib_res[etof_key] = palm.etofs[etof_key].fit_calibration_curve()
        update_calibration_plot(calib_res)

    datatable_ref_source = ColumnDataSource(
        dict(energy=["", "", ""],
             peak_pos_ref=["", "", ""],
             use_in_fit=[True, True, True]))
    datatable_ref_source.on_change("data", datatable_ref_source_callback)

    datatable_ref = DataTable(
        source=datatable_ref_source,
        columns=[
            TableColumn(field="energy",
                        title="Photon Energy, eV",
                        editor=IntEditor()),
            TableColumn(field="peak_pos_ref",
                        title="Reference Peak",
                        editor=IntEditor()),
            TableColumn(field="use_in_fit",
                        title=" ",
                        editor=CheckboxEditor(),
                        width=80),
        ],
        index_position=None,
        editable=True,
        height=300,
        width=250,
    )

    def datatable_str_source_callback(_attr, _old_value, new_value):
        for en, ps, use in zip(new_value["energy"], new_value["peak_pos_str"],
                               new_value["use_in_fit"]):
            palm.etofs["1"].calib_data.loc[
                en, "calib_tpeak"] = ps if ps != "NaN" else np.nan
            palm.etofs["1"].calib_data.loc[en, "use_in_fit"] = use

        calib_res = {}
        for etof_key in palm.etofs:
            calib_res[etof_key] = palm.etofs[etof_key].fit_calibration_curve()
        update_calibration_plot(calib_res)

    datatable_str_source = ColumnDataSource(
        dict(energy=["", "", ""],
             peak_pos_str=["", "", ""],
             use_in_fit=[True, True, True]))
    datatable_str_source.on_change("data", datatable_str_source_callback)

    datatable_str = DataTable(
        source=datatable_str_source,
        columns=[
            TableColumn(field="energy",
                        title="Photon Energy, eV",
                        editor=IntEditor()),
            TableColumn(field="peak_pos_str",
                        title="Streaked Peak",
                        editor=IntEditor()),
            TableColumn(field="use_in_fit",
                        title=" ",
                        editor=CheckboxEditor(),
                        width=80),
        ],
        index_position=None,
        editable=True,
        height=350,
        width=250,
    )

    # eTOF calibration folder path text input
    def path_textinput_callback(_attr, _old_value, _new_value):
        path_periodic_update()
        update_load_dropdown_menu()

    path_textinput = TextInput(title="eTOF calibration path:",
                               value=os.path.join(os.path.expanduser("~")),
                               width=510)
    path_textinput.on_change("value", path_textinput_callback)

    # eTOF calibration eco scans dropdown
    def scans_dropdown_callback(_attr, _old_value, new_value):
        scans_dropdown.label = new_value

    scans_dropdown = Dropdown(label="ECO scans",
                              button_type="default",
                              menu=[])
    scans_dropdown.on_change("value", scans_dropdown_callback)

    # ---- etof scans periodic update
    def path_periodic_update():
        new_menu = []
        if os.path.isdir(path_textinput.value):
            for entry in os.scandir(path_textinput.value):
                if entry.is_file() and entry.name.endswith(".json"):
                    new_menu.append((entry.name, entry.name))
        scans_dropdown.menu = sorted(new_menu, reverse=True)

    doc.add_periodic_callback(path_periodic_update, 5000)

    # Calibrate button
    def calibrate_button_callback():
        try:
            palm.calibrate_etof_eco(eco_scan_filename=os.path.join(
                path_textinput.value, scans_dropdown.value))
        except Exception:
            palm.calibrate_etof(folder_name=path_textinput.value)

        datatable_ref_source.data.update(
            energy=palm.etofs["0"].calib_data.index.tolist(),
            peak_pos_ref=palm.etofs["0"].calib_data["calib_tpeak"].tolist(),
            use_in_fit=palm.etofs["0"].calib_data["use_in_fit"].tolist(),
        )

        datatable_str_source.data.update(
            energy=palm.etofs["0"].calib_data.index.tolist(),
            peak_pos_str=palm.etofs["1"].calib_data["calib_tpeak"].tolist(),
            use_in_fit=palm.etofs["1"].calib_data["use_in_fit"].tolist(),
        )

    def update_calibration_plot(calib_res):
        etof_ref = palm.etofs["0"]
        etof_str = palm.etofs["1"]

        shift_val = 0
        etof_ref_wf_shifted = []
        etof_str_wf_shifted = []
        for wf_ref, wf_str in zip(etof_ref.calib_data["waveform"],
                                  etof_str.calib_data["waveform"]):
            shift_val -= max(wf_ref.max(), wf_str.max())
            etof_ref_wf_shifted.append(wf_ref + shift_val)
            etof_str_wf_shifted.append(wf_str + shift_val)

        waveform_ref_source.data.update(
            xs=len(etof_ref.calib_data) *
            [list(range(etof_ref.internal_time_bins))],
            ys=etof_ref_wf_shifted,
            en=etof_ref.calib_data.index.tolist(),
        )

        waveform_str_source.data.update(
            xs=len(etof_str.calib_data) *
            [list(range(etof_str.internal_time_bins))],
            ys=etof_str_wf_shifted,
            en=etof_str.calib_data.index.tolist(),
        )

        photon_peak_ref_span.location = etof_ref.calib_t0
        photon_peak_str_span.location = etof_str.calib_t0

        def plot_fit(time, calib_a, calib_b):
            time_fit = np.linspace(np.nanmin(time), np.nanmax(time), 100)
            en_fit = (calib_a / time_fit)**2 + calib_b
            return time_fit, en_fit

        def update_plot(calib_results, circle, line):
            (a, c), x, y = calib_results
            x_fit, y_fit = plot_fit(x, a, c)
            circle.data.update(x=x, y=y)
            line.data.update(x=x_fit, y=y_fit)

        update_plot(calib_res["0"], fit_ref_circle_source, fit_ref_line_source)
        update_plot(calib_res["1"], fit_str_circle_source, fit_str_line_source)

        calib_const_div.text = f"""
        a_str = {etof_str.calib_a:.2f}<br>
        b_str = {etof_str.calib_b:.2f}<br>
        <br>
        a_ref = {etof_ref.calib_a:.2f}<br>
        b_ref = {etof_ref.calib_b:.2f}
        """

    calibrate_button = Button(label="Calibrate eTOF",
                              button_type="default",
                              width=250)
    calibrate_button.on_click(calibrate_button_callback)

    # Photon peak noise threshold value text input
    def phot_peak_noise_thr_spinner_callback(_attr, old_value, new_value):
        if new_value > 0:
            for etof in palm.etofs.values():
                etof.photon_peak_noise_thr = new_value
        else:
            phot_peak_noise_thr_spinner.value = old_value

    phot_peak_noise_thr_spinner = Spinner(title="Photon peak noise threshold:",
                                          value=1,
                                          step=0.1)
    phot_peak_noise_thr_spinner.on_change(
        "value", phot_peak_noise_thr_spinner_callback)

    # Electron peak noise threshold value text input
    def el_peak_noise_thr_spinner_callback(_attr, old_value, new_value):
        if new_value > 0:
            for etof in palm.etofs.values():
                etof.electron_peak_noise_thr = new_value
        else:
            el_peak_noise_thr_spinner.value = old_value

    el_peak_noise_thr_spinner = Spinner(title="Electron peak noise threshold:",
                                        value=10,
                                        step=0.1)
    el_peak_noise_thr_spinner.on_change("value",
                                        el_peak_noise_thr_spinner_callback)

    # Save calibration button
    def save_button_callback():
        palm.save_etof_calib(path=path_textinput.value)
        update_load_dropdown_menu()

    save_button = Button(label="Save", button_type="default", width=250)
    save_button.on_click(save_button_callback)

    # Load calibration button
    def load_dropdown_callback(_attr, _old_value, new_value):
        if new_value:
            palm.load_etof_calib(os.path.join(path_textinput.value, new_value))

            datatable_ref_source.data.update(
                energy=palm.etofs["0"].calib_data.index.tolist(),
                peak_pos_ref=palm.etofs["0"].calib_data["calib_tpeak"].tolist(
                ),
                use_in_fit=palm.etofs["0"].calib_data["use_in_fit"].tolist(),
            )

            datatable_str_source.data.update(
                energy=palm.etofs["0"].calib_data.index.tolist(),
                peak_pos_str=palm.etofs["1"].calib_data["calib_tpeak"].tolist(
                ),
                use_in_fit=palm.etofs["1"].calib_data["use_in_fit"].tolist(),
            )

            # Drop selection, so that this callback can be triggered again on the same dropdown menu
            # item from the user perspective
            load_dropdown.value = ""

    def update_load_dropdown_menu():
        new_menu = []
        calib_file_ext = ".palm_etof"
        if os.path.isdir(path_textinput.value):
            for entry in os.scandir(path_textinput.value):
                if entry.is_file() and entry.name.endswith((calib_file_ext)):
                    new_menu.append(
                        (entry.name[:-len(calib_file_ext)], entry.name))
            load_dropdown.button_type = "default"
            load_dropdown.menu = sorted(new_menu, reverse=True)
        else:
            load_dropdown.button_type = "danger"
            load_dropdown.menu = new_menu

    doc.add_next_tick_callback(update_load_dropdown_menu)
    doc.add_periodic_callback(update_load_dropdown_menu, 5000)

    load_dropdown = Dropdown(label="Load", menu=[], width=250)
    load_dropdown.on_change("value", load_dropdown_callback)

    # eTOF fitting equation
    fit_eq_div = Div(
        text="""Fitting equation:<br><br><img src="/palm/static/5euwuy.gif">"""
    )

    # Calibration constants
    calib_const_div = Div(text=f"""
        a_str = {0}<br>
        b_str = {0}<br>
        <br>
        a_ref = {0}<br>
        b_ref = {0}
        """)

    # assemble
    tab_layout = column(
        row(
            column(waveform_plot, fit_plot),
            Spacer(width=30),
            column(
                path_textinput,
                scans_dropdown,
                calibrate_button,
                phot_peak_noise_thr_spinner,
                el_peak_noise_thr_spinner,
                row(save_button, load_dropdown),
                row(datatable_ref, datatable_str),
                calib_const_div,
                fit_eq_div,
            ),
        ))

    return Panel(child=tab_layout, title="eTOF Calibration")