Пример #1
0
def interactive_plot(c4, c46, c6, c9, ts):
    from bokeh.layouts import gridplot
    from bokeh.plotting import figure, show, output_file
    from bokeh.models import Range1d, LinearAxis, LogAxis
    x = np.linspace(0, 4 * np.pi, 100)
    y = np.sin(x)
    TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select"
    p1 = figure(title="Legend Example", tools=TOOLS,
                plot_width=1200, plot_height=400,
                y_axis_type="log", x_axis_type='datetime'
                )
    p2 = figure(title="Legend Example", tools=TOOLS,
                plot_width=1200, plot_height=400,
                y_axis_type="linear", x_axis_type='datetime',
                x_range=p1.x_range
                )
    # Setting the second y axis range name and range
    p1.extra_y_ranges = {"foo": Range1d(*ts[c9].quantile([.01, .99]))}
    # Adding the second axis to the plot.
    p1.add_layout(LogAxis(y_range_name="foo"), 'right')
    p1.line('time_utc', c4, legend_label=c4, source=ts, color='black')
    p1.line('time_utc', c6, legend_label=c6, source=ts, color='blue')
    p1.line('time_utc', c9, legend_label=c9, source=ts, color='red',
            y_range_name="foo"
            )
    p2.line('time_utc', c46, legend_label=c4, source=ts, color='black'

            )
    # p1.circle(x, 2 * y, legend_label="2*sin(x)", color="orange")
    # p1.circle(x, 3 * y, legend_label="3*sin(x)", color="green")
    #
    # p1.legend.title = 'Example Title'
    #
    # p2 = figure(title="Another Legend Example", tools=TOOLS)
    #
    # p2.circle(x, y, legend_label="sin(x)")
    # p2.line(x, y, legend_label="sin(x)")
    #
    # p2.line(x, 2 * y, legend_label="2*sin(x)", line_dash=(4, 4),
    #         line_color="orange", line_width=2)
    #
    # p2.square(x, 3 * y, legend_label="3*sin(x)", fill_color=None,
    #           line_color="green")
    # p2.line(x, 3 * y, legend_label="3*sin(x)", line_color="green")
    output_file("legend.html", title="legend.py example")
    show(gridplot([p1, p2], ncols=1, ))
Пример #2
0
def large_plot():
    source = ColumnDataSource(data=dict(x=[0, 1], y=[0, 1]))

    xdr = Range1d(start=0, end=1)
    xdr.tags.append("foo")
    xdr.tags.append("bar")

    ydr = Range1d(start=10, end=20)
    ydr.tags.append("foo")
    ydr.tags.append(11)

    plot = Plot(x_range=xdr, y_range=ydr)

    ydr2 = Range1d(start=0, end=100)
    plot.extra_y_ranges = {"liny": ydr2}

    circle = Circle(x="x", y="y", fill_color="red", size=5, line_color="black")
    plot.add_glyph(source, circle, name="mycircle")

    line = Line(x="x", y="y")
    plot.add_glyph(source, line, name="myline")

    rect = Rect(x="x", y="y", width=1, height=1, fill_color="green")
    plot.add_glyph(source, rect, name="myrect")

    plot.add_layout(DatetimeAxis(), 'below')
    plot.add_layout(LogAxis(), 'left')
    plot.add_layout(LinearAxis(y_range_name="liny"), 'left')

    plot.add_layout(Grid(dimension=0), 'left')
    plot.add_layout(Grid(dimension=1), 'left')

    plot.add_tools(
        BoxZoomTool(),
        PanTool(),
        SaveTool(),
        ResetTool(),
        ResizeTool(),
        WheelZoomTool(),
    )

    return plot
def test_rect_rendering_with_log_axis(output_file_url, selenium, screenshot):

    plot = Plot(plot_height=400,
                plot_width=400,
                x_range=Range1d(0, 30),
                y_range=Range1d(1, 100),
                y_axis_type="log")

    x = [10, 20]
    y = [10, 20]

    source = ColumnDataSource(data=dict(x=[(x[0] + x[1]) / 2],
                                        y=[(y[0] + y[1]) / 2],
                                        width=[x[1] - x[0]],
                                        height=[y[1] - y[0]]))
    plot.add_glyph(source, Rect(x='x', y='y', width='width', height='height'))

    plot.add_layout(LogAxis(), "left")

    # Save the plot and start the test
    save(plot)
    selenium.get(output_file_url)
    assert has_no_console_errors(selenium)
    screenshot.assert_is_valid()
Пример #4
0
def create_bk_fig(x=None, xlab=None, x_min=None, x_max=None,
                  ylab=None, fh=None, fw=None,
                  title=None, pw=None, ph=None, x_axis_type="linear",
                  y_axis_type="linear", x_name=None, y_name=None, **kwargs):
    """ Generates a bokeh figure

    Parameters
    ----------
    x :obj:`DataArray`
        Contains x-axis data
    xlab : :obj:`str`
        X-axis label
    x_min : :obj:`float`
        Min x value
    x_max : :obj:`float`
        Max x value
    ylab : :obj:`str`
        Y-axis label
    fh: :obj:`int`
        True height of figure without legends, axes titles etc
    fw: :obj:`int`
        True width of figure without legends, axes etc
    title: :obj:`str`
        Title of plot
    pw: :obj:`int`
        Plot width including legends, axes etc
    ph: :obj:`int`
        Plot height including legends, axes etc
    x_axis_type: :obj:`str`
        Type of x-axis can be linear, log, or datetime
    y_axis_type: :obj:`str`
        Can be linear, log or datetime
    x_name: :obj:`str`
        Name of the column used for the x-axis. Mostly used to form tooltips
    y_name: :obj:`str`
        Name of the column used for the y-axis. Also used for tooltips
    add_grid: :obj:`bool`
        Whether or not to add grid
    add_title: :obj:`bool`
        Whether or not to add title to plot
    add_xaxis: :obj:`bool`
        Whether or not to add x-axis and tick marks
    add_yaxis: :obj:`bool`
        Add y-axis or not
    fix_plotsize: :obj:`bool`
        Enforce certain dimensions on plot. This is useful for ensuring a plot
        is not obscure by axes and other things. If activated, plot's
        dimensions will not be responsive. It utilises fw and fh.

    Returns
    -------
    p : :obj:`Plot`
        A bokeh Plot object

    """

    add_grid = kwargs.pop("add_grid", False)
    add_title = kwargs.pop("add_title", True)
    add_xaxis = kwargs.pop("add_xaxis", False)
    add_yaxis = kwargs.pop("add_yaxis", False)
    fix_plotsize = kwargs.pop("fix_plotsize", True)
    # addition plot specs
    pl_specs = kwargs.pop("pl_specs", {})
    # additional axis specs
    ax_specs = kwargs.pop("ax_specs", {})
    # ticker specs
    ti_specs = kwargs.pop("ti_specs", {})

    plot_specs = dict(background="white", border_fill_alpha=0.1,
                      border_fill_color="white", min_border=3,
                      name="plot", outline_line_dash="solid",
                      outline_line_width=2, outline_line_color="#017afe",
                      outline_line_alpha=0.4, output_backend="canvas",
                      sizing_mode="stretch_width", title_location="above",
                      toolbar_location="above")
    plot_specs.update(pl_specs)

    axis_specs = dict(minor_tick_line_alpha=0, axis_label_text_align="center",
                      axis_label_text_font="monospace",
                      axis_label_text_font_size="10px",
                      axis_label_text_font_style="normal",
                      major_label_orientation="horizontal")
    axis_specs.update(ax_specs)

    tick_specs = dict(desired_num_ticks=5)
    tick_specs.update(ti_specs)

    # Define frame width and height
    # This is the actual size of the plot without the titles et al
    if fix_plotsize and not(fh or fw):
        fw = int(0.98 * pw)
        fh = int(0.93 * ph)

    # define the axes ranges
    x_range = DataRange1d(name="p_x_range", only_visible=True)

    y_range = DataRange1d(name="p_y_range", only_visible=True)

    if x_min is not None and x_max is not None and x_name.lower() in ["channel", "frequency"]:
        x_range = Range1d(name="p_x_range", start=x_min, end=x_max)
        y_range.only_visible = False

    # define items to add on the plot
    p_htool = HoverTool(tooltips=[(x_name, "$x"),
                                  (y_name, "$y")],
                        name="p_htool", point_policy="snap_to_data")

    if x_name.lower() == "time":
        p_htool.tooltips[0] = (x_name, "$x{%d-%m-%Y %H:%M}")
        p_htool.formatters = {"$x": "datetime"}

    p_toolbar = Toolbar(name="p_toolbar",
                        tools=[p_htool, BoxSelectTool(), BoxZoomTool(),
                               # EditTool(), # BoxEditTool(), # RangeTool(),
                               LassoSelectTool(), PanTool(), ResetTool(),
                               SaveTool(), UndoTool(), WheelZoomTool()])
    p_ticker = BasicTicker(name="p_ticker", **tick_specs)

    # select the axis scales for x and y
    if x_axis_type == "linear":
        x_scale = LinearScale(name="p_x_scale")
        # define the axes and tickers
        p_x_axis = LinearAxis(axis_label=xlab, name="p_x_axis",
                              ticker=p_ticker, **axis_specs)
    elif x_axis_type == "datetime":
        x_scale = LinearScale(name="p_x_scale")
        # define the axes and tickers
        p_x_axis = DatetimeAxis(axis_label=xlab, name="p_x_axis",
                                ticker=p_ticker, **axis_specs)
    elif x_axis_type == "log":
        x_scale = LogScale(name="p_x_scale")
        p_x_axis = LogAxis(axis_label=xlab, name="p_x_axis",
                           ticker=p_ticker, **axis_specs)

    if y_axis_type == "linear":
        y_scale = LinearScale(name="p_y_scale")
        # define the axes and tickers
        p_y_axis = LinearAxis(axis_label=ylab, name="p_y_axis",
                              ticker=p_ticker, **axis_specs)
    elif x_axis_type == "datetime":
        y_scale = LinearScale(name="p_y_scale")
        # define the axes and tickers
        p_y_axis = DatetimeAxis(axis_label=xlab, name="p_y_axis",
                                ticker=p_ticker, **axis_specs)
    elif y_axis_type == "log":
        y_scale = LogScale(name="p_y_scale")
        # define the axes and tickers
        p_y_axis = LogAxis(axis_label=ylab, name="p_y_axis",
                           ticker=p_ticker, **axis_specs)

    # Create the plot object
    p = Plot(plot_width=pw, plot_height=ph, frame_height=fh, frame_width=fw,
             toolbar=p_toolbar, x_range=x_range, x_scale=x_scale,
             y_range=y_range, y_scale=y_scale, **plot_specs)

    if add_title:
        p_title = Title(align="center", name="p_title", text=title,
                        text_font_size="24px",
                        text_font="monospace", text_font_style="bold",)
        p.add_layout(p_title, "above")

    if add_xaxis:
        p.add_layout(p_x_axis, "below")

    if add_yaxis:
        p.add_layout(p_y_axis, "left")

    if add_grid:
        p_x_grid = Grid(dimension=0, ticker=p_ticker)
        p_y_grid = Grid(dimension=1, ticker=p_ticker)
        p.add_layout(p_x_grid)
        p.add_layout(p_y_grid)

    return p
Пример #5
0
 rb_patches_list.append(rb_patches)
 # Hide yaxis
 if i_ppr != 0:
     temp_plot.yaxis.visible = False
     temp_plot2.yaxis.visible = False
     temp_plot3.yaxis.visible = False
 # Hide xaxis
 if i_pfd != 2:
     temp_plot.xaxis.visible = False
     temp_plot2.xaxis.visible = False
     temp_plot3.xaxis.visible = False
 # Add Row labels on right
 if i_ppr == 2:
     temp_plot.add_layout(
         LogAxis(axis_label=pfd_type,
                 axis_label_text_font_style='bold',
                 ticker=raw_ticker), 'right')
     temp_plot2.add_layout(
         LogAxis(axis_label=pfd_type,
                 axis_label_text_font_style='bold',
                 ticker=rel_ticker), 'right')
     temp_plot3.add_layout(
         LogAxis(axis_label=pfd_type,
                 axis_label_text_font_style='bold',
                 ticker=rel_ticker), 'right')
 # Add Col labels on top
 if i_pfd == 0:
     temp_plot.title.text = ppr_type
     temp_plot.title.align = 'center'
     temp_plot2.title.text = ppr_type
     temp_plot2.title.align = 'center'
Пример #6
0
from bokeh.io import save
from bokeh.models import ColumnDataSource, LogAxis, Plot, Range1d, Rect

plot = Plot(height=400,
            width=400,
            x_range=Range1d(0, 30),
            y_range=Range1d(1, 100))

[x0, x1] = [10, 20]
[y0, y1] = [10, 20]

source = ColumnDataSource(data=dict(
    x=[(x0 + x1) / 2], y=[(y0 + y1) / 2], width=[x1 - x0], height=[y1 - y0]))
plot.add_glyph(source, Rect(x='x', y='y', width='width', height='height'))

plot.add_layout(LogAxis(), "left")

save(plot)
Пример #7
0
def create_plots(state, oil_prod, unemp, lab_force):
    target_state = (state)
    state_dict = {'tx': 'Texas', 'nd': 'North Dakota', 'wy': 'Wyoming'}

    min_date = max(min(unemp.index), min(oil_prod.index))
    max_date = min(max(unemp.index), max(oil_prod.index))

    cur_sp500 = sp500.loc[min_date:max_date]
    source_sp500 = ColumnDataSource(cur_sp500)

    cur_oil_price = oil_price.loc[min_date:max_date]
    source_oil_price = ColumnDataSource(cur_oil_price)

    oil_prod = oil_prod.loc[min_date:max_date]
    unemp = unemp.loc[min_date:max_date]
    lab_force = lab_force.loc[min_date:max_date]

    county_xs = [
        counties[code]["lons"] for code in counties
        if counties[code]["state"] in target_state
    ]
    county_ys = [
        counties[code]["lats"] for code in counties
        if counties[code]["state"] in target_state
    ]

    county_names = unemp.columns
    county_rates = unemp.loc[cur_date].values[0]
    county_prods = oil_prod.loc[cur_date].values[0]

    TOOLS = "pan,wheel_zoom,box_zoom,reset,hover,save,tap"

    source_maps = ColumnDataSource(data=dict(x=county_xs,
                                             y=county_ys,
                                             name=county_names,
                                             rate=county_rates,
                                             prod=county_prods))

    unemp_color_mapper = LogColorMapper(palette="Viridis256",
                                        low=max(min(county_rates), 0.1),
                                        high=max(county_rates))

    fig_unemp = figure(title='%s unemployment rate for %s, %d' %
                       (state_dict[state], month_dict[cur_month], cur_year),
                       toolbar_location="left",
                       tools=TOOLS,
                       plot_width=500,
                       plot_height=450)

    pyglyph = fig_unemp.patches(
        'x',
        'y',
        source=source_maps,
        fill_color={
            'field': 'rate',
            'transform': unemp_color_mapper
        },
        fill_alpha=0.7,
        line_color="white",
        line_width=0.5,
        # set visual properties for selected glyphs
        selection_color="firebrick",

        # set visual properties for non-selected glyphs
        nonselection_fill_alpha=0.2,
        nonselection_fill_color="blue",
        nonselection_line_color="firebrick",
        nonselection_line_alpha=1.0)

    hover_unemp = fig_unemp.select(HoverTool)
    hover_unemp.point_policy = "follow_mouse"
    hover_unemp.tooltips = [
        ("Name", "@name"),
        ("Unemployment rate", "@rate%"),
        ("(Long, Lat)", "($x, $y)"),
    ]

    unemp_color_bar = ColorBar(color_mapper=unemp_color_mapper,
                               ticker=LogTicker(),
                               border_line_color=None,
                               location=(0, 0))
    fig_unemp.add_layout(unemp_color_bar, 'right')

    prod_color_mapper = LogColorMapper(palette="BuGn7",
                                       low=max(min(county_prods), 0.1),
                                       high=max(county_prods))

    fig_prods = figure(title='%s production data for %s, %d' %
                       (state_dict[state], month_dict[cur_month], cur_year),
                       toolbar_location="left",
                       tools=TOOLS,
                       plot_width=500,
                       plot_height=450)

    pyglyph_prod = fig_prods.patches(
        'x',
        'y',
        source=source_maps,
        fill_color={
            'field': 'prod',
            'transform': prod_color_mapper
        },
        fill_alpha=0.7,
        line_color="grey",
        line_width=0.5,
        # set visual properties for selected glyphs
        selection_color="firebrick",

        # set visual properties for non-selected glyphs
        nonselection_fill_alpha=0.2,
        nonselection_fill_color="blue",
        nonselection_line_color="firebrick",
        nonselection_line_alpha=1.0)

    hover_prod = fig_prods.select(HoverTool)
    hover_prod.point_policy = "follow_mouse"
    hover_prod.tooltips = [
        ("Name", "@name"),
        ("Production", "@prod bbls"),
        ("(Long, Lat)", "($x, $y)"),
    ]

    prod_color_bar = ColorBar(color_mapper=prod_color_mapper,
                              ticker=LogTicker(),
                              label_standoff=12,
                              border_line_color=None,
                              location=(0, 0))
    fig_prods.add_layout(prod_color_bar, 'right')

    cur_county = county_names[0]
    source_oil = ColumnDataSource(
        data=dict(date=oil_prod.index, oil_prod=oil_prod[cur_county]))

    fig1 = figure(title='Employment vs Oil prices for ' + cur_county,
                  x_axis_type='datetime',
                  plot_width=700,
                  plot_height=400,
                  toolbar_location='left',
                  tools=TOOLS)

    source_figures = ColumnDataSource(
        dict(date=unemp.index,
             unemp=unemp[cur_county],
             lab_force=lab_force[cur_county]))

    fig1.circle('Date',
                'WTI',
                source=source_oil_price,
                legend="Oil Price, $",
                selection_color='red',
                nonselection_fill_color='grey',
                nonselection_fill_alpha=0.2)
    fig1.line('Date', 'WTI', source=source_oil_price, legend="Oil Price, $")
    fig1.xaxis.axis_label = 'Date'
    fig1.yaxis.axis_label = 'Oil Price, $ (month avg.)'
    fig1.y_range = Range1d(start=0, end=150)

    # Adding second y axis for unemployment
    fig1.extra_y_ranges['unemp'] = Range1d(start=0, end=50)
    fig1.add_layout(
        LinearAxis(y_range_name="unemp", axis_label='Unemployment Rate (%)'),
        'right')

    # Adding third y axis for labor force
    fig1.extra_y_ranges['labforce'] = Range1d(
        start=max(100,
                  min(lab_force[cur_county]) - 1000),
        end=max(lab_force[cur_county]) + 1000)
    fig1.add_layout(
        LogAxis(y_range_name="labforce", axis_label='Labor Force (log)'),
        'right')

    fig1.circle('date',
                'unemp',
                source=source_figures,
                y_range_name="unemp",
                legend="Unemployment rate (%)",
                color='orange')
    fig1.line('date',
              'unemp',
              source=source_figures,
              y_range_name="unemp",
              legend="Unemployment rate (%)",
              color='orange')

    fig1.circle('date',
                'lab_force',
                source=source_figures,
                y_range_name="labforce",
                legend="Labor Force (log)",
                color='green')
    fig1.line('date',
              'lab_force',
              source=source_figures,
              y_range_name="labforce",
              legend="Labor Force (log)",
              color='green')
    fig1.legend.location = 'top_left'
    fig1.legend.label_text_font_size = '8pt'

    fig2 = figure(title='Employment vs Oil production for ' + cur_county,
                  x_axis_type='datetime',
                  plot_width=700,
                  plot_height=400,
                  toolbar_location='left',
                  tools=TOOLS)
    fig2.circle('date',
                'oil_prod',
                source=source_oil,
                legend='Oil production (bbls)',
                hover_color='red',
                selection_color='red',
                nonselection_fill_color='grey',
                nonselection_fill_alpha=0.2)
    fig2.xaxis.axis_label = 'Date'
    fig2.yaxis.axis_label = 'Oil Production (bbls)'
    fig2.y_range = Range1d(start=max(0,
                                     min(oil_prod[cur_county]) - 1000),
                           end=max(oil_prod[cur_county]) + 1000)

    # Adding second y axis for unemployment
    fig2.extra_y_ranges['unemp'] = Range1d(start=0, end=50)
    fig2.add_layout(
        LinearAxis(y_range_name="unemp", axis_label='Unemployment Rate (%)'),
        'right')

    # Adding third y axis for labor force
    fig2.extra_y_ranges['labforce'] = Range1d(
        start=max(100,
                  min(lab_force[cur_county]) - 1000),
        end=max(lab_force[cur_county] + 1000))
    fig2.add_layout(
        LogAxis(y_range_name="labforce", axis_label='Labor Force (log)'),
        'right')

    fig2.circle('date',
                'unemp',
                source=source_figures,
                y_range_name="unemp",
                legend="Unemployment rate (%)",
                color='orange')
    fig2.line('date',
              'unemp',
              source=source_figures,
              y_range_name="unemp",
              legend="Unemployment rate (%)",
              color='orange')

    fig2.circle('date',
                'lab_force',
                source=source_figures,
                y_range_name="labforce",
                legend="Labor Force (log)",
                color='green')
    fig2.line('date',
              'lab_force',
              source=source_figures,
              y_range_name="labforce",
              legend="Labor Force (log)",
              color='green')
    fig2.legend.location = 'top_left'
    fig2.legend.label_text_font_size = '8pt'

    fig3 = figure(title='Employment vs S&P 500 for ' + cur_county,
                  x_axis_type='datetime',
                  plot_width=700,
                  plot_height=400,
                  toolbar_location='left',
                  tools=TOOLS)
    fig3.circle('Date',
                'SP500',
                source=source_sp500,
                legend='S&P 500 index',
                hover_color='red',
                selection_color='red',
                nonselection_fill_color='grey',
                nonselection_fill_alpha=0.2)
    fig3.xaxis.axis_label = 'Date'
    fig3.yaxis.axis_label = 'S&P 500 index'
    fig3.y_range = Range1d(start=0, end=max(sp500['SP500']))

    # Adding second y axis for unemployment
    fig3.extra_y_ranges['unemp'] = Range1d(start=0, end=50)
    fig3.add_layout(
        LinearAxis(y_range_name="unemp", axis_label='Unemployment Rate (%)'),
        'right')

    # Adding third y axis for labor force
    fig3.extra_y_ranges['labforce'] = Range1d(
        start=max(100,
                  min(lab_force[cur_county]) - 1000),
        end=max(lab_force[cur_county] + 1000))
    fig3.add_layout(
        LogAxis(y_range_name="labforce", axis_label='Labor Force (log)'),
        'right')

    fig3.circle('date',
                'unemp',
                source=source_figures,
                y_range_name="unemp",
                legend="Unemployment rate (%)",
                color='orange')
    fig3.line('date',
              'unemp',
              source=source_figures,
              y_range_name="unemp",
              legend="Unemployment rate (%)",
              color='orange')

    fig3.circle('date',
                'lab_force',
                source=source_figures,
                y_range_name="labforce",
                legend="Labor Force (log)",
                color='green')
    fig3.line('date',
              'lab_force',
              source=source_figures,
              y_range_name="labforce",
              legend="Labor Force (log)",
              color='green')
    fig3.legend.location = 'top_left'
    fig3.legend.label_text_font_size = '8pt'

    def fig_callback_tap(attr, old, new):
        try:
            # The index of the selected glyph is : new['1d']['indices'][0]
            selections = new['1d']['indices']
            patch_name = source_maps.data['name'][selections[0]]
            source_figures.data = dict(date=unemp.index,
                                       unemp=unemp[patch_name],
                                       lab_force=lab_force[patch_name])
            source_oil.data = dict(date=oil_prod.index,
                                   oil_prod=oil_prod[patch_name])
        except:
            selections = old['1d']['indices']
            patch_name = source_maps.data['name'][selections[0]]
            source_figures.data = dict(date=unemp.index,
                                       unemp=unemp[patch_name],
                                       lab_force=lab_force[patch_name])
            source_oil.data = dict(date=oil_prod.index,
                                   oil_prod=oil_prod[patch_name])

        fig1.title.text = 'Employment vs Oil prices for ' + patch_name
        fig2.title.text = 'Employment vs Oil production for ' + patch_name
        fig3.title.text = 'Employment vs S&P 500 for ' + patch_name
        fig2.y_range.start = max(0, min(oil_prod[patch_name]) - 1000)
        fig2.y_range.end = max(oil_prod[patch_name]) + 1000

        fig1.extra_y_ranges['labforce'].start = max(
            100,
            min(lab_force[patch_name]) - 1000)
        fig1.extra_y_ranges['labforce'].end = max(lab_force[patch_name] + 1000)
        fig2.extra_y_ranges['labforce'].start = max(
            100,
            min(lab_force[patch_name]) - 1000)
        fig2.extra_y_ranges['labforce'].end = max(lab_force[patch_name] + 1000)
        fig3.extra_y_ranges['labforce'].start = max(
            100,
            min(lab_force[patch_name]) - 1000)
        fig3.extra_y_ranges['labforce'].end = max(lab_force[patch_name] + 1000)

    pyglyph.data_source.on_change('selected', fig_callback_tap)
    pyglyph_prod.data_source.on_change('selected', fig_callback_tap)

    def update_plot_yr(attr, old, new):
        # Assign the value of the slider: new_year
        new_year = slider_yr.value
        new_month = slider_month.value

        new_date = pd.to_datetime({
            'year': [new_year],
            'month': [new_month],
            'day': [1]
        })
        new_rates = unemp.loc[new_date].values[0]
        new_prods = oil_prod.loc[new_date].values[0]

        # Set new_data
        new_data = dict(x=county_xs,
                        y=county_ys,
                        name=county_names,
                        rate=new_rates,
                        prod=new_prods)

        # Assign new_data to: source.data
        source_maps.data = new_data

        # Add title to figure: plot.title.text
        fig_unemp.title.text = '%s unemployment rate for %s, %d' % (
            state_dict[state], month_dict[new_month], new_year)

        # Add title to figure: plot.title.text
        fig_prods.title.text = '%s production data for %s, %d' % (
            state_dict[state], month_dict[new_month], new_year)

    # Make a slider object: slider
    slider_yr = Slider(title='Year',
                       start=1990,
                       end=2016,
                       step=1,
                       value=cur_year)

    # Attach the callback to the 'value' property of slider
    slider_yr.on_change('value', update_plot_yr)

    # Make a slider object: slider
    slider_month = Slider(title='Month',
                          start=1,
                          end=12,
                          step=1,
                          value=cur_month)

    # Attach the callback to the 'value' property of slider
    slider_month.on_change('value', update_plot_yr)

    return fig_unemp, fig_prods, fig1, fig2, fig3, slider_yr, slider_month
Пример #8
0
taptool = fig.select(TapTool)
taptool.callback = OpenURL(url=url)

# figure out what the default axis limits are
ydiff = np.log10(ymax) - np.log10(ymin)
ystart = 10.**(np.log10(ymin) - 0.05 * ydiff)
yend = 10.**(np.log10(ymax) + 0.05 * ydiff)

# jupiter/earth mass ratio
massratio = 317.8

# set up the second axis with the proper scaling
fig.extra_y_ranges = {
    "jup": Range1d(start=ystart / massratio, end=yend / massratio)
}
fig.add_layout(LogAxis(y_range_name="jup"), 'right')

# add the first y-axis's label and use our custom log formatting for both axes
fig.yaxis.axis_label = 'Mass (Earth Masses)'
fig.yaxis.formatter = FuncTickFormatter(code=log_axis_labels())

# add the x-axis's label and use our custom log formatting
fig.xaxis.axis_label = 'Period (days)'
fig.xaxis.formatter = FuncTickFormatter(code=log_axis_labels())

# add the second y-axis's label
fig.right[0].axis_label = 'Mass (Jupiter Masses)'

# set up all the legend objects
items = [
    LegendItem(label=ii + f' ({counts[methods.index(ii)]})', renderers=[jj])
Пример #9
0
	def plotting(self):

		if self.debug:
			self.debug_file = open("debug_output.txt", "w")
			self.debug_file.write("Initialized plotting subroutine \n")
			 

		TOOLS="pan,wheel_zoom,box_zoom,reset,hover,previewsave"

		tab_plots = []
		self.all_elements = []
		self.elements_comparison = []

		for filename in self.filenames:
			if "ITO" in filename:
				tab_plots.append(self.mass_plotting(filename))
				continue
	
			data_dict = self.data_generation(filename)
			self.data_test(data_dict)

			name_check = data_dict["gen_info"]["DATA FILES"]
			attr_id = name_check[1][4][:-3] + "_" + name_check[2][2]
			self.attribute_ids.append(attr_id)

			attr_extra_y_ranges = False
			attr_extra_x_ranges = False

			local_source_line = []

			"""
			create plots for each datafile and put them in a tab.
			"""

			y_axis_units = [x["y_unit"] for x in data_dict["data"]]
			x_axis_units = [x["x_unit"] for x in data_dict["data"]]

			figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log",
			title = attr_id, tools = TOOLS)
			#figure_obj.axes.major_label_text_font_size("12pt")
			#figure_obj.major_label_text_font_size("12pt")

			hover = figure_obj.select(dict(type = HoverTool))
			hover.tooltips = [
							("Element:", "@element"),
							("(x, y):", "($x, $y)")]

			self.figure_data.append((figure_obj, data_dict))
		
			figure_obj.yaxis.axis_label = y_axis_units[0]
			figure_obj.xaxis.axis_label = x_axis_units[0]

			if not all(x == y_axis_units[0] for x in y_axis_units):
				for unit, dataset in zip(y_axis_units, data_dict["data"]): 
					if not unit == y_axis_units[0]:
						
						extra_y_ranges_exists = attr_extra_y_ranges
						extra_y_ranges_exists = True

						if self.debug:
							  
							self.debug_file.write("Added extra y-axis for file_id: %s, element: %s | New length %g \n" 
								%(attr_id, dataset["sample_element"], len(figure_obj.yaxis)))
							 

						figure_obj.extra_y_ranges =  {"foo": Range1d(start = np.amin(dataset["y"]),
						end = np.amax(dataset["y"]))}
						figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
						break

			if not all(x == x_axis_units[0] for x in x_axis_units):
				for unit, dataset in zip(x_axis_units, data_dict["data"]): 
					if not unit == x_axis_units[0]:
						
						extra_x_ranges_exists = attr_extra_x_ranges
						extra_x_ranges_exists = True
						
						if self.debug:
							  
							self.debug_file.write("Added extra x-axis for file_id: %s, element: %s. | New length %g \n" 
								%(attr_id, dataset["sample_element"], len(figure_obj.yaxis)))
							 
			
						figure_obj.extra_x_ranges =  {"bar": Range1d(start = np.amin(dataset["x"]),
						end = np.amax(dataset["x"]))}
						figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
						break

			figure_obj.xaxis.axis_label = x_axis_units[0]
			colour_list = Spectral11 + RdPu9 + Oranges9
			colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]


			list_of_elements = []
			source_list = []
			line_list = []

			for dataset, color_index in zip(data_dict["data"], colour_indices):

				self.all_elements.append(dataset["sample_element"]) #strip isotope number 
				color = colour_list[color_index]

				source = ColumnDataSource(data = dataset) #Datastructure for source of plotting

				self.source_test(source)

				list_of_elements.append(dataset["sample_element"])
				line_glyph = figure_obj.line("x", "y", source = source, 
							line_width = 2,
							line_color = color, 
							legend = dataset["sample_element"])

				if self.debug:
					self.debug_file.write("Create line object on figure %s  at %s \n" %(id(figure_obj), id(line_glyph)))
					 

				line_list.append(line_glyph)
				source_list.append(source)

			local_source_line.append([[source, line] for source, line in zip(source_list, line_list)])
			self.source_line.append(local_source_line)

			#Calculations on the dataset
			text_input_rsf = TextInput(value = "default", title = "RSF or SF (at/cm^3): ")
			do_integral_button = Button(label = "Calibration integral")
			smoothing_button = Button(label = "smth selct elem")
			matplot_button = Button(label = "Create matplotlib fig")

			text_input_sputter = TextInput(value = "default", title = "Sputter speed: number unit")
			text_input_crater_depth = TextInput(value = "default", title = "Depth of crater in: number unit")
			


			radio_group = RadioGroup(labels = list_of_elements, active=0)


			text_input_xval_integral = TextInput(value = "0", title = "x-delimiter ")
			text_input_dose = TextInput(value = "0", title = "Dose[cm^-2] ")

			#Save files for later use
			save_flexDPE_button = Button(label = "Save element for FlexPDE")
			save_all_flexDPE_button = Button(label = "Save all elements for FlexPDE")
			save_textfile_button = Button(label = "Sava Data in textfile")

			#Pointers to methods on click / change handlers
			radio_group.on_change("active", lambda attr, old, new: None)

			matplot_button.on_click(lambda source_list = source_list:
										self.matplotlib_export(source_list))
			
			do_integral_button.on_click(lambda 
											source_list = source_list, 
											line_list = line_list, 
											source_line = self.source_line,
											figure_data = self.figure_data,
											data_dict = data_dict,
											radio = radio_group,
											x_box = text_input_xval_integral, 
											dose = text_input_dose,
											extra_y_ranges = attr_extra_y_ranges: 
										self.integrate(data_dict, source_list, line_list, source_line, figure_data, radio, x_box, dose, extra_y_ranges))

			smoothing_button.on_click(lambda 
										source_list = source_list,
										radio = radio_group, 
										data_dict = data_dict,
										x_box = text_input_xval_integral: 
									self.smoothing(source_list, data_dict, radio, x_box) )

			save_flexDPE_button.on_click(lambda 
											source_list = source_list,
											attrname = attr_id,
											radio = radio_group: 
										self.write_to_flexPDE(source_list, attrname, radio))

			save_all_flexDPE_button.on_click(lambda 
												source_list = source_list, 
												attrname = attr_id:
												self.write_all_to_flexPDE(source_list, attrname))

			save_textfile_button.on_click(lambda 
											data_dict = data_dict, 
											source_list = source_list,
											attrname = attr_id,
											radio = radio_group:
											self.write_new_datafile(data_dict, source_list, attrname,radio))


			text_input_rsf.on_change("value", lambda attr, old, new, 
												radio = radio_group, 
												data_dict = data_dict,
												figure = figure_obj,
												source_list = source_list,
												text_input = text_input_rsf,
												line_list = line_list,
												which = "rsf":
												self.update_data(line_list, data_dict, source_list, figure, radio, text_input, new, which))


			text_input_sputter.on_change("value", lambda attr, old, new, 
													radio = radio_group, 
													data_dict = data_dict,
													figure = figure_obj,
													source_list = source_list, 
													text_input = text_input_sputter,
													which = "sputter":
													self.update_data(data_dict, source_list, figure, radio, text_input, new, which))

			text_input_crater_depth.on_change("value", lambda attr, old, new, 
														radio = radio_group, 
														data_dict = data_dict,
														source_list = source_list,
														figure = figure_obj,
														text_input = text_input_crater_depth, 
														which = "crater_depth":
														self.update_data(data_dict, source_list, figure, radio, text_input, new, which))


			#Initialization of actual plotting. 
			tab_plots.append(Panel(child = hplot(figure_obj, 
										   vform(
										   vform(radio_group, save_flexDPE_button, save_all_flexDPE_button, save_textfile_button, matplot_button), 
										   vform(text_input_rsf, smoothing_button, text_input_sputter, text_input_crater_depth)
										   ),
										   vform(text_input_xval_integral, text_input_dose, do_integral_button)),
										   title = attr_id))



		"""
		Check to see if one or more element exists in the samples and creat a comparison plot for each 
		of those elements.
		"""
		
		for element in self.all_elements:
			checkers = list(self.all_elements)
			checkers.remove(element)
			if element in checkers and not element in self.elements_comparison:
				self.elements_comparison.append(element)

		"""create plots for each element that is to be compared """
	
		for comparison_element in self.elements_comparison: 

			figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log", title = comparison_element, tools = TOOLS)
			#figure_obj.xaxis.major_label_text_font_size("12pt")
			#figure_obj.yaxis.major_label_text_font_size("12pt")
			
			y_axis_units = []
			x_axis_units = []

			comparison_datasets = []

			for data_dict_iter in self.column(self.figure_data, 1):

				for dataset in data_dict_iter["data"]:

					if dataset["sample_element"] == comparison_element:
						comparison_datasets.append(dataset)
						y_axis_units.append(dataset["y_unit"])
						x_axis_units.append(dataset["x_unit"])

			figure_obj.xaxis.axis_label = comparison_datasets[-1]["x_unit"]
			figure_obj.yaxis.axis_label = comparison_datasets[-1]["y_unit"]

			if not all(x == y_axis_units[-1] for x in y_axis_units):
				for unit, data in zip(y_axis_units, comparison_datasets): 
					if not unit == y_axis_units[-1]:
						figure_obj.extra_y_ranges =  {"foo": Range1d(start = np.amin(data["y"]),
						end = np.amax(data["y"]))}
						figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
						break

			if not all(x == x_axis_units[-1] for x in x_axis_units):
				for unit, data in zip(x_axis_units, comparison_datasets): 
					if not unit == x_axis_units[-1]:
						figure_obj.extra_x_ranges =  {"bar": Range1d(start = np.amin(data["x"]),
						end = np.amax(data["x"]))}
						figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
						break

			active_sources = []
			for data_dict, source_line_nested, attr_id, color_index  in zip(self.column(self.figure_data, 1), self.source_line,  self.attribute_ids,  colour_indices):

				for dataset, source_lis_coup, in zip(data_dict["data"], source_line_nested[0]):
					
					source_local = source_lis_coup[0]
					active_sources.append(source_local)

					self.source_test(source_local)
					self.source_dataset_test(source_local, dataset)

					if dataset["sample_element"] == comparison_element:
						color = colour_list[color_index]

						"""
						Logic that ensures that plots get put with correspoinding axes. 
						"""
						if dataset["x_unit"] != x_axis_units[-1] or dataset["y_unit"] != y_axis_units[-1]:

							if dataset["x_unit"] != x_axis_units[-1] and dataset["y_unit"] != y_axis_units[-1]:
								name_check = data_dict["gen_info"]["DATA FILES"]
								attr_id = name_check[1][4][:-3] + "_" + name_check[2][2]

								figure_obj.line("x", "y", source = source_local,
								line_width = 2, 
								line_color = color, 
								legend = attr_id,
								x_range_name = "bar", 
								y_range_name = "foo")

							elif dataset["x_unit"] != x_axis_units[-1]:

								figure_obj.line("x", "y", source = source_local,
								line_width = 2, 
								line_color = color, 
								legend = attr_id, 
								x_range_name = "bar")

							else: 

								figure_obj.line("x", "y", source = source_local,
								line_width = 2, 
								line_color = color, 
								legend = attr_id, 
								y_range_name = "foo")

						else: 
							figure_obj.line("x", "y", source = source_local,
							line_width = 2, 
							line_color = color, 
							legend = attr_id)


			matplot_button = Button(label = "Create matplotlib fig")
			save_all_flexDPE_button = Button(label = "Save all elements for FlexPDE")

			matplot_button.on_click(lambda source_list = active_sources:
							self.matplotlib_export(source_list))	

			save_all_flexDPE_button.on_click(lambda 
									source_list = active_sources, 
									attrname = comparison_element:
									self.write_all_to_flexPDE(source_list, attrname))


			tab_plots.append(Panel(child = hplot(figure_obj, vform(save_all_flexDPE_button, matplot_button)), 
				title = comparison_element))	


		tabs = Tabs(tabs = tab_plots)
		#curdoc().add_root(tabs)
		session = push_session(curdoc())
		session.show()
		session.loop_until_closed()
Пример #10
0
fig1_tx.yaxis.axis_label = 'Oil Price, $ (month avg.)'
fig1_tx.y_range = Range1d(start=0, end=150)

# Adding second y axis for unemployment
fig1_tx.extra_y_ranges['unemp'] = Range1d(start=0, end=50)
fig1_tx.add_layout(
    LinearAxis(y_range_name="unemp", axis_label='Unemployment Rate (%)'),
    'right')

# Adding third y axis for labor force
fig1_tx.extra_y_ranges['labforce'] = Range1d(
    start=max(100,
              min(tx_lab_force[cur_tx_county]) - 1000),
    end=max(tx_lab_force[cur_tx_county]) + 1000)
fig1_tx.add_layout(
    LogAxis(y_range_name="labforce", axis_label='Labor Force (log)'), 'right')

fig1_tx.circle('date',
               'unemp',
               source=source_tx_figures,
               y_range_name="unemp",
               legend="Unemployment rate (%)",
               color='orange')
fig1_tx.line('date',
             'unemp',
             source=source_tx_figures,
             y_range_name="unemp",
             legend="Unemployment rate (%)",
             color='orange')

fig1_tx.circle('date',
plot.outline_line_color = c_gray
plot.line(x=[0,L], y=[0,0], line_color = c_gray, line_dash ="4 4")                                             # beam initial position
plot.add_glyph(support_left_source,ImageURL(url="src", x='x', y='y', w= 'w', h= 'h', anchor= "top_center"))    # beam supports
plot.add_glyph(support_right_source,ImageURL(url="src", x='x', y='y', w= 'w', h= 'h', anchor= "top_center"))   # beam supports
plot.line(x = 'x', y = 'y', source = beam_coordinates_source, color = c_black)                              
plot.line(x = 'x', y = 'y', source = lfa_coordinates_source, color = c_green, line_dash = "dashed")         
arrow_load = Arrow(start=NormalHead(line_color=c_orange, fill_color = c_orange, fill_alpha = 0.5),           
                   end=NormalHead(line_alpha = 0, fill_alpha = 0),
                   x_start='xs', y_start='ye', x_end='xe', y_end='ys', line_alpha = 0, source=load_arrow_source,line_color=c_white)
plot.add_layout(arrow_load)

# amplitude for every excitation frequency ratio
disp_freq = figure(x_range = [0.04, max_r], y_axis_type="log", y_range = [0.00001,100],
                   height = 335, width = 280,toolbar_location = None, tools = "")
disp_freq.yaxis.visible = False
disp_freq.add_layout(LogAxis(axis_label='Normalized Deflection W(x)⋅E⋅I/(F⋅L³)'), 'right')
disp_freq.xaxis.axis_label = "Excitation Frequency Ratio"
disp_freq.outline_line_color = c_gray
disp_freq.line(x = 'x', y = 'y', source = amp_coordinates_source)
disp_freq.line(x = 'x', y = 'y', source = freq_coordinates_source, line_dash = "dashed")

# phase angle for every excitation frequency ratio
disp_phase = figure(x_range = [0.04, max_r], y_range = [-pi-0.1, pi+0.1],
                   height = 335, width = 280,toolbar_location = None, tools = "")
disp_phase.yaxis.axis_label = "Phase Angle [rad]"
disp_phase.yaxis.visible = False
disp_phase.add_layout(LinearAxis(axis_label='Phase Angle [rad]'), 'right')
disp_phase.xaxis.axis_label = "Excitation Frequency Ratio"
disp_phase.outline_line_color = c_gray
disp_phase.line(x = 'x', y = 'y', source = phase_coordinates_source)
disp_phase.line(x = 'x', y = 'y', source = freq2_coordinates_source, line_dash = "dashed")
Пример #12
0
    def plotting(self):

        #Tools = [hover, TapTool(), BoxZoomTool(), BoxSelectTool(), PreviewSaveTool(), ResetTool()]
        TOOLS = "crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave"

        tab_plots = []
        #output_file("test.html")
        self.all_elements = []
        self.elements_comparison = []

        for attr_id, i in zip(self.attribute_ids,
                              range(len(self.attribute_ids))):
            """
			create plots for each datafile and put them in a tab.
			"""
            list_of_datasets = getattr(self, attr_id)
            y_axis_units = [x["y_unit"] for x in list_of_datasets]
            x_axis_units = [x["x_unit"] for x in list_of_datasets]

            figure_obj = figure(plot_width=1000,
                                plot_height=800,
                                y_axis_type="log",
                                title=attr_id,
                                tools=TOOLS)
            #figure_obj.axes.major_label_text_font_size("12pt")
            #figure_obj.major_label_text_font_size("12pt")

            setattr(self, attr_id + "_" + "figure_obj", figure_obj)

            figure_obj.yaxis.axis_label = y_axis_units[0]
            figure_obj.xaxis.axis_label = x_axis_units[0]

            if not all(x == y_axis_units[0] for x in y_axis_units):
                for unit, data in zip(y_axis_units, list_of_datasets):
                    if not unit == y_axis_units[0]:
                        figure_obj.extra_y_ranges = {
                            "foo":
                            Range1d(start=np.amin(data["data"]["y"]),
                                    end=np.amax(data["data"]["y"]))
                        }
                        figure_obj.add_layout(
                            LogAxis(y_range_name="foo", axis_label=unit),
                            "right")
                        break

            if not all(x == x_axis_units[0] for x in x_axis_units):
                for unit, data in zip(x_axis_units, list_of_datasets):
                    if not unit == x_axis_units[0]:
                        figure_obj.extra_x_ranges = {
                            "bar":
                            Range1d(start=np.amin(data["data"]["x"]),
                                    end=np.amax(data["data"]["x"]))
                        }
                        figure_obj.add_layout(
                            LinearAxis(x_range_name="bar", axis_label=unit),
                            "above")
                        break

            figure_obj.xaxis.axis_label = list_of_datasets[0]["x_unit"]
            colour_list = Spectral11 + RdPu9 + Oranges9
            colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]

            list_of_elements = []

            for dataset, color_index in zip(list_of_datasets, colour_indices):

                self.all_elements.append(
                    dataset["sample element"])  #strip isotope number
                color = colour_list[color_index]

                source = ColumnDataSource(
                    data=dataset["data"]
                )  #Datastructure for source of plotting

                setattr(self,
                        attr_id + "_" + dataset["sample element"] + "_source",
                        source)  #Source element generalized for all plotting

                list_of_elements.append(dataset["sample element"])

                figure_obj.line(
                    "x",
                    "y",
                    source=getattr(
                        self,
                        attr_id + "_" + dataset["sample element"] + "_source"),
                    line_width=2,
                    line_color=color,
                    legend=dataset["sample element"],
                    name=dataset["sample element"],
                )

            hover = figure_obj.select_one(HoverTool).tooltips = [
                ("element", "@element"), ("(x,y)", "($x, $y)")
            ]

            radio_group = RadioGroup(labels=list_of_elements, active=0)
            """
			Need to fetch default variables from input file and replace DEFAULT

			Block of code produces the layout of buttons and callbacks
			"""

            #Calculations on the dataset
            text_input_rsf = TextInput(value="default",
                                       title="RSF (at/cm^3): ")
            do_integral_button = Button(label="Calibration Integral")
            smoothing_button = Button(label="Smoothing on selected curve")

            text_input_sputter = TextInput(value="default",
                                           title="Sputter speed: float unit")
            text_input_crater_depth = TextInput(
                value="default", title="Depth of crater in: float")

            radio_group.on_change("active", lambda attr, old, new: None)

            text_input_xval_integral = TextInput(
                value="0", title="x-value for calibration integral ")
            text_input_yval_integral = TextInput(
                value="0", title="y-value for calibration integral ")

            #Save files for later use
            save_flexDPE_button = Button(label="Save element for FlexPDE")
            save_all_flexDPE_button = Button(
                label="Save all elements for FlexPDE")

            #Pointers to methods on click / change handlers
            do_integral_button.on_click(
                lambda identity=self.attribute_ids[i], radio=radio_group, x_box
                =text_input_xval_integral, y_box=text_input_yval_integral: self
                .integrate(identity, radio, x_box, y_box))

            smoothing_button.on_click(lambda identity=self.attribute_ids[
                i], radio=radio_group: self.smoothing(identity, radio))

            save_flexDPE_button.on_click(lambda identity=self.attribute_ids[
                i], radio=radio_group: self.write_to_flexPDE(identity, radio))

            save_all_flexDPE_button.on_click(
                lambda identity=self.attribute_ids[i], radio=radio_group: self.
                write_all_to_flexPDE(identity, radio))

            text_input_rsf.on_change(
                "value",
                lambda attr, old, new, radio=radio_group, identity=self.
                attribute_ids[i], text_input=text_input_rsf, which="rsf": self.
                update_data(identity, radio, text_input, new, which))

            text_input_sputter.on_change(
                "value",
                lambda attr, old, new, radio=radio_group, identity=self.
                attribute_ids[i], text_input=
                text_input_sputter, which="sputter": self.update_data(
                    identity, radio, text_input, new, which))

            text_input_crater_depth.on_change(
                "value",
                lambda attr, old, new, radio=radio_group, identity=self.
                attribute_ids[i], text_input=text_input_crater_depth, which=
                "crater_depth": self.update_data(identity, radio, text_input,
                                                 new, which))

            #Initialization of actual plotting.
            tab_plots.append(
                Panel(child=hplot(
                    figure_obj,
                    vform(radio_group, save_flexDPE_button,
                          save_all_flexDPE_button),
                    vform(text_input_rsf, smoothing_button, text_input_sputter,
                          text_input_crater_depth),
                    vform(text_input_xval_integral, text_input_yval_integral,
                          do_integral_button)),
                      title=attr_id))
        """
		Check to see if one or more element exists in the samples and creat a comparison plot for each 
		of those elements.
		"""

        for element in self.all_elements:
            checkers = list(self.all_elements)
            checkers.remove(element)
            if element in checkers and not element in self.elements_comparison:
                self.elements_comparison.append(element)
        """create plots for each element that is to be compared """

        for comparison_element in self.elements_comparison:

            colour_list = Spectral11 + RdPu9 + Oranges9
            colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]
            figure_obj = figure(plot_width=1000,
                                plot_height=800,
                                y_axis_type="log",
                                title=comparison_element,
                                tools=TOOLS)
            #figure_obj.xaxis.major_label_text_font_size("12pt")
            #figure_obj.yaxis.major_label_text_font_size("12pt")

            y_axis_units = []
            x_axis_units = []

            comparison_datasets = []

            for attr_id, color_index in zip(self.attribute_ids,
                                            colour_indices):

                list_of_datasets = getattr(self, attr_id)

                for dataset in list_of_datasets:

                    if dataset["sample element"] == comparison_element:
                        comparison_datasets.append(dataset)
                        y_axis_units.append(dataset["y_unit"])
                        x_axis_units.append(dataset["x_unit"])

            figure_obj.xaxis.axis_label = comparison_datasets[-1]["x_unit"]
            figure_obj.yaxis.axis_label = comparison_datasets[-1]["y_unit"]

            if not all(x == y_axis_units[-1] for x in y_axis_units):
                for unit, data in zip(y_axis_units, comparison_datasets):
                    if not unit == y_axis_units[-1]:
                        figure_obj.extra_y_ranges = {
                            "foo":
                            Range1d(start=np.amin(data["data"]["y"]),
                                    end=np.amax(data["data"]["y"]))
                        }
                        figure_obj.add_layout(
                            LogAxis(y_range_name="foo", axis_label=unit),
                            "right")
                        break

            if not all(x == x_axis_units[-1] for x in x_axis_units):
                for unit, data in zip(x_axis_units, comparison_datasets):
                    if not unit == x_axis_units[-1]:
                        figure_obj.extra_x_ranges = {
                            "bar":
                            Range1d(start=np.amin(data["data"]["x"]),
                                    end=np.amax(data["data"]["x"]))
                        }
                        figure_obj.add_layout(
                            LinearAxis(x_range_name="bar", axis_label=unit),
                            "above")
                        break

            for attr_id, color_index in zip(self.attribute_ids,
                                            colour_indices):

                list_of_datasets = getattr(self, attr_id)

                for dataset in list_of_datasets:

                    if dataset["sample element"] == comparison_element:
                        color = colour_list[color_index]
                        """
						Logic that ensures that plots get put with correspoinding axes. 
						"""
                        if dataset["x_unit"] != x_axis_units[-1] or dataset[
                                "y_unit"] != y_axis_units[-1]:

                            if dataset["x_unit"] != x_axis_units[
                                    -1] and dataset["y_unit"] != y_axis_units[
                                        -1]:

                                figure_obj.line(
                                    "x",
                                    "y",
                                    source=getattr(
                                        self, attr_id + "_" +
                                        dataset["sample element"] + "_source"),
                                    line_width=2,
                                    line_color=color,
                                    legend=attr_id,
                                    x_range_name="bar",
                                    y_range_name="foo")

                            elif dataset["x_unit"] != x_axis_units[-1]:

                                figure_obj.line(
                                    "x",
                                    "y",
                                    source=getattr(
                                        self, attr_id + "_" +
                                        dataset["sample element"] + "_source"),
                                    line_width=2,
                                    line_color=color,
                                    legend=attr_id,
                                    x_range_name="bar")

                            else:

                                figure_obj.line(
                                    "x",
                                    "y",
                                    source=getattr(
                                        self, attr_id + "_" +
                                        dataset["sample element"] + "_source"),
                                    line_width=2,
                                    line_color=color,
                                    legend=attr_id,
                                    y_range_name="foo")

                        else:
                            figure_obj.line(
                                "x",
                                "y",
                                source=getattr(
                                    self, attr_id + "_" +
                                    dataset["sample element"] + "_source"),
                                line_width=2,
                                line_color=color,
                                legend=attr_id)

            tab_plots.append(Panel(child=figure_obj, title=comparison_element))

        tabs = Tabs(tabs=tab_plots)

        session = push_session(curdoc())
        session.show()
        session.loop_until_closed()
Пример #13
0
    def make_plot(self):

        self.p = figure(
            x_axis_label="Date",
            x_axis_type="datetime",
            y_axis_label="Total Cases and Deaths",
            width=900,
        )

        self.p.extra_y_ranges = {"ratio_axis": Range1d()}

        axis = LinearAxis(y_range_name="ratio_axis")
        axis.formatter = NumeralTickFormatter(format="0 %")
        self.p.add_layout(axis, "right")

        colors = Category20_3

        self.p.line(
            source=self.src,
            x="date",
            y="cases",
            line_width=2,
            color=colors[0],
            legend_label="Cases",
        )
        self.p.line(
            source=self.src,
            x="date",
            y="deaths",
            line_width=2,
            color=colors[1],
            legend_label="Deaths",
        )
        self.p.line(
            source=self.src,
            x="date",
            y="ratio",
            line_width=2,
            y_range_name="ratio_axis",
            color=colors[2],
            legend_label="Deaths/Cases",
        )

        self.p.legend.location = "top_left"

        self.logp = figure(
            x_axis_label="Date",
            x_axis_type="datetime",
            y_axis_label="Total Cases and Deaths",
            y_axis_type="log",
            width=900,
        )

        self.logp.extra_y_ranges = {"ratio_axis": Range1d()}

        logaxis = LogAxis(y_range_name="ratio_axis")
        logaxis.formatter = NumeralTickFormatter(format="0 %")
        self.logp.add_layout(logaxis, "right")

        self.logp.line(
            source=self.src,
            x="date",
            y="cases",
            line_width=2,
            color=colors[0],
            legend_label="Cases",
        )
        self.logp.line(
            source=self.src,
            x="date",
            y="deaths",
            line_width=2,
            color=colors[1],
            legend_label="Deaths",
        )
        self.logp.line(
            source=self.src,
            x="date",
            y="ratio",
            line_width=2,
            y_range_name="ratio_axis",
            color=colors[2],
            legend_label="Deaths/Cases",
        )

        self.p.legend.location = "top_left"
Пример #14
0
def update_scale(attr, old, new):
    ticker = LinearAxis()
    if new == "Log scale":
        ticker = LogAxis()
    pairplots['dimdem'].yaxis[0] = ticker