Пример #1
0
def create():
    det_data = []
    fit_params = {}
    js_data = ColumnDataSource(data=dict(content=["", ""], fname=["", ""]))

    def proposal_textinput_callback(_attr, _old, new):
        proposal = new.strip()
        for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
            proposal_path = os.path.join(zebra_proposals_path, proposal)
            if os.path.isdir(proposal_path):
                # found it
                break
        else:
            raise ValueError(f"Can not find data for proposal '{proposal}'.")

        file_list = []
        for file in os.listdir(proposal_path):
            if file.endswith((".ccl", ".dat")):
                file_list.append((os.path.join(proposal_path, file), file))
        file_select.options = file_list
        file_open_button.disabled = False
        file_append_button.disabled = False

    proposal_textinput = TextInput(title="Proposal number:", width=210)
    proposal_textinput.on_change("value", proposal_textinput_callback)

    def _init_datatable():
        scan_list = [s["idx"] for s in det_data]
        file_list = []
        for scan in det_data:
            file_list.append(os.path.basename(scan["original_filename"]))

        scan_table_source.data.update(
            file=file_list,
            scan=scan_list,
            param=[None] * len(scan_list),
            fit=[0] * len(scan_list),
            export=[True] * len(scan_list),
        )
        scan_table_source.selected.indices = []
        scan_table_source.selected.indices = [0]

        scan_motor_select.options = det_data[0]["scan_motors"]
        scan_motor_select.value = det_data[0]["scan_motor"]
        param_select.value = "user defined"

    file_select = MultiSelect(title="Available .ccl/.dat files:",
                              width=210,
                              height=250)

    def file_open_button_callback():
        nonlocal det_data
        det_data = []
        for f_name in file_select.value:
            with open(f_name) as file:
                base, ext = os.path.splitext(f_name)
                if det_data:
                    append_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(append_data,
                                              monitor_spinner.value)
                    det_data.extend(append_data)
                else:
                    det_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(det_data, monitor_spinner.value)
                    js_data.data.update(
                        fname=[base + ".comm", base + ".incomm"])

        _init_datatable()
        append_upload_button.disabled = False

    file_open_button = Button(label="Open New", width=100, disabled=True)
    file_open_button.on_click(file_open_button_callback)

    def file_append_button_callback():
        for f_name in file_select.value:
            with open(f_name) as file:
                _, ext = os.path.splitext(f_name)
                append_data = pyzebra.parse_1D(file, ext)

            pyzebra.normalize_dataset(append_data, monitor_spinner.value)
            det_data.extend(append_data)

        _init_datatable()

    file_append_button = Button(label="Append", width=100, disabled=True)
    file_append_button.on_click(file_append_button_callback)

    def upload_button_callback(_attr, _old, new):
        nonlocal det_data
        det_data = []
        for f_str, f_name in zip(new, upload_button.filename):
            with io.StringIO(base64.b64decode(f_str).decode()) as file:
                base, ext = os.path.splitext(f_name)
                if det_data:
                    append_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(append_data,
                                              monitor_spinner.value)
                    det_data.extend(append_data)
                else:
                    det_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(det_data, monitor_spinner.value)
                    js_data.data.update(
                        fname=[base + ".comm", base + ".incomm"])

        _init_datatable()
        append_upload_button.disabled = False

    upload_div = Div(text="or upload new .ccl/.dat files:",
                     margin=(5, 5, 0, 5))
    upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
    upload_button.on_change("value", upload_button_callback)

    def append_upload_button_callback(_attr, _old, new):
        for f_str, f_name in zip(new, append_upload_button.filename):
            with io.StringIO(base64.b64decode(f_str).decode()) as file:
                _, ext = os.path.splitext(f_name)
                append_data = pyzebra.parse_1D(file, ext)

            pyzebra.normalize_dataset(append_data, monitor_spinner.value)
            det_data.extend(append_data)

        _init_datatable()

    append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
    append_upload_button = FileInput(accept=".ccl,.dat",
                                     multiple=True,
                                     width=200,
                                     disabled=True)
    append_upload_button.on_change("value", append_upload_button_callback)

    def monitor_spinner_callback(_attr, _old, new):
        if det_data:
            pyzebra.normalize_dataset(det_data, new)
            _update_plot()

    monitor_spinner = Spinner(title="Monitor:",
                              mode="int",
                              value=100_000,
                              low=1,
                              width=145)
    monitor_spinner.on_change("value", monitor_spinner_callback)

    def scan_motor_select_callback(_attr, _old, new):
        if det_data:
            for scan in det_data:
                scan["scan_motor"] = new
            _update_plot()

    scan_motor_select = Select(title="Scan motor:", options=[], width=145)
    scan_motor_select.on_change("value", scan_motor_select_callback)

    def _update_table():
        fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
        scan_table_source.data.update(fit=fit_ok)

    def _update_plot():
        _update_single_scan_plot(_get_selected_scan())
        _update_overview()

    def _update_single_scan_plot(scan):
        scan_motor = scan["scan_motor"]

        y = scan["counts"]
        x = scan[scan_motor]

        plot.axis[0].axis_label = scan_motor
        plot_scatter_source.data.update(x=x,
                                        y=y,
                                        y_upper=y + np.sqrt(y),
                                        y_lower=y - np.sqrt(y))

        fit = scan.get("fit")
        if fit is not None:
            x_fit = np.linspace(x[0], x[-1], 100)
            plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))

            x_bkg = []
            y_bkg = []
            xs_peak = []
            ys_peak = []
            comps = fit.eval_components(x=x_fit)
            for i, model in enumerate(fit_params):
                if "linear" in model:
                    x_bkg = x_fit
                    y_bkg = comps[f"f{i}_"]

                elif any(val in model
                         for val in ("gaussian", "voigt", "pvoigt")):
                    xs_peak.append(x_fit)
                    ys_peak.append(comps[f"f{i}_"])

            plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
            plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)

            fit_output_textinput.value = fit.fit_report()

        else:
            plot_fit_source.data.update(x=[], y=[])
            plot_bkg_source.data.update(x=[], y=[])
            plot_peak_source.data.update(xs=[], ys=[])
            fit_output_textinput.value = ""

    def _update_overview():
        xs = []
        ys = []
        param = []
        x = []
        y = []
        par = []
        for s, p in enumerate(scan_table_source.data["param"]):
            if p is not None:
                scan = det_data[s]
                scan_motor = scan["scan_motor"]
                xs.append(scan[scan_motor])
                x.extend(scan[scan_motor])
                ys.append(scan["counts"])
                y.extend([float(p)] * len(scan[scan_motor]))
                param.append(float(p))
                par.extend(scan["counts"])

        if det_data:
            scan_motor = det_data[0]["scan_motor"]
            ov_plot.axis[0].axis_label = scan_motor
            ov_param_plot.axis[0].axis_label = scan_motor

        ov_plot_mline_source.data.update(xs=xs,
                                         ys=ys,
                                         param=param,
                                         color=color_palette(len(xs)))

        if y:
            mapper["transform"].low = np.min([np.min(y) for y in ys])
            mapper["transform"].high = np.max([np.max(y) for y in ys])
        ov_param_plot_scatter_source.data.update(x=x, y=y, param=par)

        if y:
            interp_f = interpolate.interp2d(x, y, par)
            x1, x2 = min(x), max(x)
            y1, y2 = min(y), max(y)
            image = interp_f(
                np.linspace(x1, x2, ov_param_plot.inner_width // 10),
                np.linspace(y1, y2, ov_param_plot.inner_height // 10),
                assume_sorted=True,
            )
            ov_param_plot_image_source.data.update(image=[image],
                                                   x=[x1],
                                                   y=[y1],
                                                   dw=[x2 - x1],
                                                   dh=[y2 - y1])
        else:
            ov_param_plot_image_source.data.update(image=[],
                                                   x=[],
                                                   y=[],
                                                   dw=[],
                                                   dh=[])

    def _update_param_plot():
        x = []
        y = []
        fit_param = fit_param_select.value
        for s, p in zip(det_data, scan_table_source.data["param"]):
            if "fit" in s and fit_param:
                x.append(p)
                y.append(s["fit"].values[fit_param])

        param_plot_scatter_source.data.update(x=x, y=y)

    # Main plot
    plot = Plot(
        x_range=DataRange1d(),
        y_range=DataRange1d(only_visible=True),
        plot_height=450,
        plot_width=700,
    )

    plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
    plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")

    plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    plot_scatter_source = ColumnDataSource(
        dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
    plot_scatter = plot.add_glyph(
        plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue"))
    plot.add_layout(
        Whisker(source=plot_scatter_source,
                base="x",
                upper="y_upper",
                lower="y_lower"))

    plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
    plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))

    plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
    plot_bkg = plot.add_glyph(
        plot_bkg_source,
        Line(x="x", y="y", line_color="green", line_dash="dashed"))

    plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
    plot_peak = plot.add_glyph(
        plot_peak_source,
        MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed"))

    fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
    plot.add_layout(fit_from_span)

    fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
    plot.add_layout(fit_to_span)

    plot.add_layout(
        Legend(
            items=[
                ("data", [plot_scatter]),
                ("best fit", [plot_fit]),
                ("peak", [plot_peak]),
                ("linear", [plot_bkg]),
            ],
            location="top_left",
            click_policy="hide",
        ))

    plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
    plot.toolbar.logo = None

    # Overview multilines plot
    ov_plot = Plot(x_range=DataRange1d(),
                   y_range=DataRange1d(),
                   plot_height=450,
                   plot_width=700)

    ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
    ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")

    ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    ov_plot_mline_source = ColumnDataSource(
        dict(xs=[], ys=[], param=[], color=[]))
    ov_plot.add_glyph(ov_plot_mline_source,
                      MultiLine(xs="xs", ys="ys", line_color="color"))

    hover_tool = HoverTool(tooltips=[("param", "@param")])
    ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool())

    ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
    ov_plot.toolbar.logo = None

    # Overview perams plot
    ov_param_plot = Plot(x_range=DataRange1d(),
                         y_range=DataRange1d(),
                         plot_height=450,
                         plot_width=700)

    ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
    ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"),
                             place="below")

    ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    ov_param_plot_image_source = ColumnDataSource(
        dict(image=[], x=[], y=[], dw=[], dh=[]))
    ov_param_plot.add_glyph(
        ov_param_plot_image_source,
        Image(image="image", x="x", y="y", dw="dw", dh="dh"))

    ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[]))
    mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50)
    ov_param_plot.add_glyph(
        ov_param_plot_scatter_source,
        Scatter(x="x", y="y", line_color=mapper, fill_color=mapper, size=10),
    )

    ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
    ov_param_plot.toolbar.logo = None

    # Parameter plot
    param_plot = Plot(x_range=DataRange1d(),
                      y_range=DataRange1d(),
                      plot_height=400,
                      plot_width=700)

    param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
    param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")

    param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[]))
    param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))

    param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
    param_plot.toolbar.logo = None

    def fit_param_select_callback(_attr, _old, _new):
        _update_param_plot()

    fit_param_select = Select(title="Fit parameter", options=[], width=145)
    fit_param_select.on_change("value", fit_param_select_callback)

    # Plot tabs
    plots = Tabs(tabs=[
        Panel(child=plot, title="single scan"),
        Panel(child=ov_plot, title="overview"),
        Panel(child=ov_param_plot, title="overview map"),
        Panel(child=column(param_plot, row(fit_param_select)),
              title="parameter plot"),
    ])

    # Scan select
    def scan_table_select_callback(_attr, old, new):
        if not new:
            # skip empty selections
            return

        # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
        if len(new) > 1:
            # drop selection to the previous one
            scan_table_source.selected.indices = old
            return

        if len(old) > 1:
            # skip unnecessary update caused by selection drop
            return

        _update_plot()

    def scan_table_source_callback(_attr, _old, _new):
        _update_preview()

    scan_table_source = ColumnDataSource(
        dict(file=[], scan=[], param=[], fit=[], export=[]))
    scan_table_source.on_change("data", scan_table_source_callback)

    scan_table = DataTable(
        source=scan_table_source,
        columns=[
            TableColumn(field="file", title="file", width=150),
            TableColumn(field="scan", title="scan", width=50),
            TableColumn(field="param",
                        title="param",
                        editor=NumberEditor(),
                        width=50),
            TableColumn(field="fit", title="Fit", width=50),
            TableColumn(field="export",
                        title="Export",
                        editor=CheckboxEditor(),
                        width=50),
        ],
        width=410,  # +60 because of the index column
        editable=True,
        autosize_mode="none",
    )

    def scan_table_source_callback(_attr, _old, _new):
        if scan_table_source.selected.indices:
            _update_plot()

    scan_table_source.selected.on_change("indices", scan_table_select_callback)
    scan_table_source.on_change("data", scan_table_source_callback)

    def _get_selected_scan():
        return det_data[scan_table_source.selected.indices[0]]

    def param_select_callback(_attr, _old, new):
        if new == "user defined":
            param = [None] * len(det_data)
        else:
            param = [scan[new] for scan in det_data]

        scan_table_source.data["param"] = param
        _update_param_plot()

    param_select = Select(
        title="Parameter:",
        options=["user defined", "temp", "mf", "h", "k", "l"],
        value="user defined",
        width=145,
    )
    param_select.on_change("value", param_select_callback)

    def fit_from_spinner_callback(_attr, _old, new):
        fit_from_span.location = new

    fit_from_spinner = Spinner(title="Fit from:", width=145)
    fit_from_spinner.on_change("value", fit_from_spinner_callback)

    def fit_to_spinner_callback(_attr, _old, new):
        fit_to_span.location = new

    fit_to_spinner = Spinner(title="to:", width=145)
    fit_to_spinner.on_change("value", fit_to_spinner_callback)

    def fitparams_add_dropdown_callback(click):
        # bokeh requires (str, str) for MultiSelect options
        new_tag = f"{click.item}-{fitparams_select.tags[0]}"
        fitparams_select.options.append((new_tag, click.item))
        fit_params[new_tag] = fitparams_factory(click.item)
        fitparams_select.tags[0] += 1

    fitparams_add_dropdown = Dropdown(
        label="Add fit function",
        menu=[
            ("Linear", "linear"),
            ("Gaussian", "gaussian"),
            ("Voigt", "voigt"),
            ("Pseudo Voigt", "pvoigt"),
            # ("Pseudo Voigt1", "pseudovoigt1"),
        ],
        width=145,
    )
    fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)

    def fitparams_select_callback(_attr, old, new):
        # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
        if len(new) > 1:
            # drop selection to the previous one
            fitparams_select.value = old
            return

        if len(old) > 1:
            # skip unnecessary update caused by selection drop
            return

        if new:
            fitparams_table_source.data.update(fit_params[new[0]])
        else:
            fitparams_table_source.data.update(
                dict(param=[], value=[], vary=[], min=[], max=[]))

    fitparams_select = MultiSelect(options=[], height=120, width=145)
    fitparams_select.tags = [0]
    fitparams_select.on_change("value", fitparams_select_callback)

    def fitparams_remove_button_callback():
        if fitparams_select.value:
            sel_tag = fitparams_select.value[0]
            del fit_params[sel_tag]
            for elem in fitparams_select.options:
                if elem[0] == sel_tag:
                    fitparams_select.options.remove(elem)
                    break

            fitparams_select.value = []

    fitparams_remove_button = Button(label="Remove fit function", width=145)
    fitparams_remove_button.on_click(fitparams_remove_button_callback)

    def fitparams_factory(function):
        if function == "linear":
            params = ["slope", "intercept"]
        elif function == "gaussian":
            params = ["amplitude", "center", "sigma"]
        elif function == "voigt":
            params = ["amplitude", "center", "sigma", "gamma"]
        elif function == "pvoigt":
            params = ["amplitude", "center", "sigma", "fraction"]
        elif function == "pseudovoigt1":
            params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
        else:
            raise ValueError("Unknown fit function")

        n = len(params)
        fitparams = dict(
            param=params,
            value=[None] * n,
            vary=[True] * n,
            min=[None] * n,
            max=[None] * n,
        )

        if function == "linear":
            fitparams["value"] = [0, 1]
            fitparams["vary"] = [False, True]
            fitparams["min"] = [None, 0]

        elif function == "gaussian":
            fitparams["min"] = [0, None, None]

        return fitparams

    fitparams_table_source = ColumnDataSource(
        dict(param=[], value=[], vary=[], min=[], max=[]))
    fitparams_table = DataTable(
        source=fitparams_table_source,
        columns=[
            TableColumn(field="param", title="Parameter"),
            TableColumn(field="value", title="Value", editor=NumberEditor()),
            TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
            TableColumn(field="min", title="Min", editor=NumberEditor()),
            TableColumn(field="max", title="Max", editor=NumberEditor()),
        ],
        height=200,
        width=350,
        index_position=None,
        editable=True,
        auto_edit=True,
    )

    # start with `background` and `gauss` fit functions added
    fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
    fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
    fitparams_select.value = ["gaussian-1"]  # add selection to gauss

    fit_output_textinput = TextAreaInput(title="Fit results:",
                                         width=750,
                                         height=200)

    def proc_all_button_callback():
        for scan, export in zip(det_data, scan_table_source.data["export"]):
            if export:
                pyzebra.fit_scan(scan,
                                 fit_params,
                                 fit_from=fit_from_spinner.value,
                                 fit_to=fit_to_spinner.value)
                pyzebra.get_area(
                    scan,
                    area_method=AREA_METHODS[area_method_radiobutton.active],
                    lorentz=lorentz_checkbox.active,
                )

        _update_plot()
        _update_table()

        for scan in det_data:
            if "fit" in scan:
                options = list(scan["fit"].params.keys())
                fit_param_select.options = options
                fit_param_select.value = options[0]
                break
        _update_param_plot()

    proc_all_button = Button(label="Process All",
                             button_type="primary",
                             width=145)
    proc_all_button.on_click(proc_all_button_callback)

    def proc_button_callback():
        scan = _get_selected_scan()
        pyzebra.fit_scan(scan,
                         fit_params,
                         fit_from=fit_from_spinner.value,
                         fit_to=fit_to_spinner.value)
        pyzebra.get_area(
            scan,
            area_method=AREA_METHODS[area_method_radiobutton.active],
            lorentz=lorentz_checkbox.active,
        )

        _update_plot()
        _update_table()

        for scan in det_data:
            if "fit" in scan:
                options = list(scan["fit"].params.keys())
                fit_param_select.options = options
                fit_param_select.value = options[0]
                break
        _update_param_plot()

    proc_button = Button(label="Process Current", width=145)
    proc_button.on_click(proc_button_callback)

    area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
    area_method_radiobutton = RadioGroup(labels=["Function", "Area"],
                                         active=0,
                                         width=145)

    lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"],
                                     width=145,
                                     margin=(13, 5, 5, 5))

    export_preview_textinput = TextAreaInput(title="Export file preview:",
                                             width=450,
                                             height=400)

    def _update_preview():
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_file = temp_dir + "/temp"
            export_data = []
            for s, export in zip(det_data, scan_table_source.data["export"]):
                if export:
                    export_data.append(s)

            # pyzebra.export_1D(export_data, temp_file, "fullprof")

            exported_content = ""
            file_content = []
            for ext in (".comm", ".incomm"):
                fname = temp_file + ext
                if os.path.isfile(fname):
                    with open(fname) as f:
                        content = f.read()
                        exported_content += f"{ext} file:\n" + content
                else:
                    content = ""
                file_content.append(content)

            js_data.data.update(content=file_content)
            export_preview_textinput.value = exported_content

    save_button = Button(label="Download File(s)",
                         button_type="success",
                         width=220)
    save_button.js_on_click(
        CustomJS(args={"js_data": js_data}, code=javaScript))

    fitpeak_controls = row(
        column(fitparams_add_dropdown, fitparams_select,
               fitparams_remove_button),
        fitparams_table,
        Spacer(width=20),
        column(fit_from_spinner, lorentz_checkbox, area_method_div,
               area_method_radiobutton),
        column(fit_to_spinner, proc_button, proc_all_button),
    )

    scan_layout = column(scan_table,
                         row(monitor_spinner, scan_motor_select, param_select))

    import_layout = column(
        proposal_textinput,
        file_select,
        row(file_open_button, file_append_button),
        upload_div,
        upload_button,
        append_upload_div,
        append_upload_button,
    )

    export_layout = column(export_preview_textinput, row(save_button))

    tab_layout = column(
        row(import_layout, scan_layout, plots, Spacer(width=30),
            export_layout),
        row(fitpeak_controls, fit_output_textinput),
    )

    return Panel(child=tab_layout, title="param study")
Пример #2
0
def create():
    det_data = {}
    fit_params = {}
    js_data = ColumnDataSource(
        data=dict(content=["", ""], fname=["", ""], ext=["", ""]))

    def proposal_textinput_callback(_attr, _old, new):
        proposal = new.strip()
        for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
            proposal_path = os.path.join(zebra_proposals_path, proposal)
            if os.path.isdir(proposal_path):
                # found it
                break
        else:
            raise ValueError(f"Can not find data for proposal '{proposal}'.")

        file_list = []
        for file in os.listdir(proposal_path):
            if file.endswith((".ccl", ".dat")):
                file_list.append((os.path.join(proposal_path, file), file))
        file_select.options = file_list
        file_open_button.disabled = False
        file_append_button.disabled = False

    proposal_textinput = TextInput(title="Proposal number:", width=210)
    proposal_textinput.on_change("value", proposal_textinput_callback)

    def _init_datatable():
        scan_list = [s["idx"] for s in det_data]
        hkl = [f'{s["h"]} {s["k"]} {s["l"]}' for s in det_data]
        export = [s.get("active", True) for s in det_data]
        scan_table_source.data.update(
            scan=scan_list,
            hkl=hkl,
            fit=[0] * len(scan_list),
            export=export,
        )
        scan_table_source.selected.indices = []
        scan_table_source.selected.indices = [0]

        merge_options = [(str(i), f"{i} ({idx})")
                         for i, idx in enumerate(scan_list)]
        merge_from_select.options = merge_options
        merge_from_select.value = merge_options[0][0]

    file_select = MultiSelect(title="Available .ccl/.dat files:",
                              width=210,
                              height=250)

    def file_open_button_callback():
        nonlocal det_data
        det_data = []
        for f_name in file_select.value:
            with open(f_name) as file:
                base, ext = os.path.splitext(f_name)
                if det_data:
                    append_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(append_data,
                                              monitor_spinner.value)
                    pyzebra.merge_datasets(det_data, append_data)
                else:
                    det_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(det_data, monitor_spinner.value)
                    pyzebra.merge_duplicates(det_data)
                    js_data.data.update(fname=[base, base])

        _init_datatable()
        append_upload_button.disabled = False

    file_open_button = Button(label="Open New", width=100, disabled=True)
    file_open_button.on_click(file_open_button_callback)

    def file_append_button_callback():
        for f_name in file_select.value:
            with open(f_name) as file:
                _, ext = os.path.splitext(f_name)
                append_data = pyzebra.parse_1D(file, ext)

            pyzebra.normalize_dataset(append_data, monitor_spinner.value)
            pyzebra.merge_datasets(det_data, append_data)

        _init_datatable()

    file_append_button = Button(label="Append", width=100, disabled=True)
    file_append_button.on_click(file_append_button_callback)

    def upload_button_callback(_attr, _old, new):
        nonlocal det_data
        det_data = []
        for f_str, f_name in zip(new, upload_button.filename):
            with io.StringIO(base64.b64decode(f_str).decode()) as file:
                base, ext = os.path.splitext(f_name)
                if det_data:
                    append_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(append_data,
                                              monitor_spinner.value)
                    pyzebra.merge_datasets(det_data, append_data)
                else:
                    det_data = pyzebra.parse_1D(file, ext)
                    pyzebra.normalize_dataset(det_data, monitor_spinner.value)
                    pyzebra.merge_duplicates(det_data)
                    js_data.data.update(fname=[base, base])

        _init_datatable()
        append_upload_button.disabled = False

    upload_div = Div(text="or upload new .ccl/.dat files:",
                     margin=(5, 5, 0, 5))
    upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
    upload_button.on_change("value", upload_button_callback)

    def append_upload_button_callback(_attr, _old, new):
        for f_str, f_name in zip(new, append_upload_button.filename):
            with io.StringIO(base64.b64decode(f_str).decode()) as file:
                _, ext = os.path.splitext(f_name)
                append_data = pyzebra.parse_1D(file, ext)

            pyzebra.normalize_dataset(append_data, monitor_spinner.value)
            pyzebra.merge_datasets(det_data, append_data)

        _init_datatable()

    append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
    append_upload_button = FileInput(accept=".ccl,.dat",
                                     multiple=True,
                                     width=200,
                                     disabled=True)
    append_upload_button.on_change("value", append_upload_button_callback)

    def monitor_spinner_callback(_attr, old, new):
        if det_data:
            pyzebra.normalize_dataset(det_data, new)
            _update_plot(_get_selected_scan())

    monitor_spinner = Spinner(title="Monitor:",
                              mode="int",
                              value=100_000,
                              low=1,
                              width=145)
    monitor_spinner.on_change("value", monitor_spinner_callback)

    def _update_table():
        fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
        scan_table_source.data.update(fit=fit_ok)

    def _update_plot(scan):
        scan_motor = scan["scan_motor"]

        y = scan["counts"]
        x = scan[scan_motor]

        plot.axis[0].axis_label = scan_motor
        plot_scatter_source.data.update(x=x,
                                        y=y,
                                        y_upper=y + np.sqrt(y),
                                        y_lower=y - np.sqrt(y))

        fit = scan.get("fit")
        if fit is not None:
            x_fit = np.linspace(x[0], x[-1], 100)
            plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))

            x_bkg = []
            y_bkg = []
            xs_peak = []
            ys_peak = []
            comps = fit.eval_components(x=x_fit)
            for i, model in enumerate(fit_params):
                if "linear" in model:
                    x_bkg = x_fit
                    y_bkg = comps[f"f{i}_"]

                elif any(val in model
                         for val in ("gaussian", "voigt", "pvoigt")):
                    xs_peak.append(x_fit)
                    ys_peak.append(comps[f"f{i}_"])

            plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
            plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)

            fit_output_textinput.value = fit.fit_report()

        else:
            plot_fit_source.data.update(x=[], y=[])
            plot_bkg_source.data.update(x=[], y=[])
            plot_peak_source.data.update(xs=[], ys=[])
            fit_output_textinput.value = ""

    # Main plot
    plot = Plot(
        x_range=DataRange1d(),
        y_range=DataRange1d(only_visible=True),
        plot_height=470,
        plot_width=700,
    )

    plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
    plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")

    plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    plot_scatter_source = ColumnDataSource(
        dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
    plot_scatter = plot.add_glyph(
        plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue"))
    plot.add_layout(
        Whisker(source=plot_scatter_source,
                base="x",
                upper="y_upper",
                lower="y_lower"))

    plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
    plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))

    plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
    plot_bkg = plot.add_glyph(
        plot_bkg_source,
        Line(x="x", y="y", line_color="green", line_dash="dashed"))

    plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
    plot_peak = plot.add_glyph(
        plot_peak_source,
        MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed"))

    fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
    plot.add_layout(fit_from_span)

    fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
    plot.add_layout(fit_to_span)

    plot.add_layout(
        Legend(
            items=[
                ("data", [plot_scatter]),
                ("best fit", [plot_fit]),
                ("peak", [plot_peak]),
                ("linear", [plot_bkg]),
            ],
            location="top_left",
            click_policy="hide",
        ))

    plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
    plot.toolbar.logo = None

    # Scan select
    def scan_table_select_callback(_attr, old, new):
        if not new:
            # skip empty selections
            return

        # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
        if len(new) > 1:
            # drop selection to the previous one
            scan_table_source.selected.indices = old
            return

        if len(old) > 1:
            # skip unnecessary update caused by selection drop
            return

        _update_plot(det_data[new[0]])

    def scan_table_source_callback(_attr, _old, _new):
        _update_preview()

    scan_table_source = ColumnDataSource(
        dict(scan=[], hkl=[], fit=[], export=[]))
    scan_table_source.on_change("data", scan_table_source_callback)

    scan_table = DataTable(
        source=scan_table_source,
        columns=[
            TableColumn(field="scan", title="Scan", width=50),
            TableColumn(field="hkl", title="hkl", width=100),
            TableColumn(field="fit", title="Fit", width=50),
            TableColumn(field="export",
                        title="Export",
                        editor=CheckboxEditor(),
                        width=50),
        ],
        width=310,  # +60 because of the index column
        height=350,
        autosize_mode="none",
        editable=True,
    )

    scan_table_source.selected.on_change("indices", scan_table_select_callback)

    def _get_selected_scan():
        return det_data[scan_table_source.selected.indices[0]]

    merge_from_select = Select(title="scan:", width=145)

    def merge_button_callback():
        scan_into = _get_selected_scan()
        scan_from = det_data[int(merge_from_select.value)]

        if scan_into is scan_from:
            print("WARNING: Selected scans for merging are identical")
            return

        pyzebra.merge_scans(scan_into, scan_from)
        _update_plot(_get_selected_scan())

    merge_button = Button(label="Merge into current", width=145)
    merge_button.on_click(merge_button_callback)

    def restore_button_callback():
        pyzebra.restore_scan(_get_selected_scan())
        _update_plot(_get_selected_scan())

    restore_button = Button(label="Restore scan", width=145)
    restore_button.on_click(restore_button_callback)

    def fit_from_spinner_callback(_attr, _old, new):
        fit_from_span.location = new

    fit_from_spinner = Spinner(title="Fit from:", width=145)
    fit_from_spinner.on_change("value", fit_from_spinner_callback)

    def fit_to_spinner_callback(_attr, _old, new):
        fit_to_span.location = new

    fit_to_spinner = Spinner(title="to:", width=145)
    fit_to_spinner.on_change("value", fit_to_spinner_callback)

    def fitparams_add_dropdown_callback(click):
        # bokeh requires (str, str) for MultiSelect options
        new_tag = f"{click.item}-{fitparams_select.tags[0]}"
        fitparams_select.options.append((new_tag, click.item))
        fit_params[new_tag] = fitparams_factory(click.item)
        fitparams_select.tags[0] += 1

    fitparams_add_dropdown = Dropdown(
        label="Add fit function",
        menu=[
            ("Linear", "linear"),
            ("Gaussian", "gaussian"),
            ("Voigt", "voigt"),
            ("Pseudo Voigt", "pvoigt"),
            # ("Pseudo Voigt1", "pseudovoigt1"),
        ],
        width=145,
    )
    fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)

    def fitparams_select_callback(_attr, old, new):
        # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
        if len(new) > 1:
            # drop selection to the previous one
            fitparams_select.value = old
            return

        if len(old) > 1:
            # skip unnecessary update caused by selection drop
            return

        if new:
            fitparams_table_source.data.update(fit_params[new[0]])
        else:
            fitparams_table_source.data.update(
                dict(param=[], value=[], vary=[], min=[], max=[]))

    fitparams_select = MultiSelect(options=[], height=120, width=145)
    fitparams_select.tags = [0]
    fitparams_select.on_change("value", fitparams_select_callback)

    def fitparams_remove_button_callback():
        if fitparams_select.value:
            sel_tag = fitparams_select.value[0]
            del fit_params[sel_tag]
            for elem in fitparams_select.options:
                if elem[0] == sel_tag:
                    fitparams_select.options.remove(elem)
                    break

            fitparams_select.value = []

    fitparams_remove_button = Button(label="Remove fit function", width=145)
    fitparams_remove_button.on_click(fitparams_remove_button_callback)

    def fitparams_factory(function):
        if function == "linear":
            params = ["slope", "intercept"]
        elif function == "gaussian":
            params = ["amplitude", "center", "sigma"]
        elif function == "voigt":
            params = ["amplitude", "center", "sigma", "gamma"]
        elif function == "pvoigt":
            params = ["amplitude", "center", "sigma", "fraction"]
        elif function == "pseudovoigt1":
            params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
        else:
            raise ValueError("Unknown fit function")

        n = len(params)
        fitparams = dict(
            param=params,
            value=[None] * n,
            vary=[True] * n,
            min=[None] * n,
            max=[None] * n,
        )

        if function == "linear":
            fitparams["value"] = [0, 1]
            fitparams["vary"] = [False, True]
            fitparams["min"] = [None, 0]

        elif function == "gaussian":
            fitparams["min"] = [0, None, None]

        return fitparams

    fitparams_table_source = ColumnDataSource(
        dict(param=[], value=[], vary=[], min=[], max=[]))
    fitparams_table = DataTable(
        source=fitparams_table_source,
        columns=[
            TableColumn(field="param", title="Parameter"),
            TableColumn(field="value", title="Value", editor=NumberEditor()),
            TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
            TableColumn(field="min", title="Min", editor=NumberEditor()),
            TableColumn(field="max", title="Max", editor=NumberEditor()),
        ],
        height=200,
        width=350,
        index_position=None,
        editable=True,
        auto_edit=True,
    )

    # start with `background` and `gauss` fit functions added
    fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
    fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
    fitparams_select.value = ["gaussian-1"]  # add selection to gauss

    fit_output_textinput = TextAreaInput(title="Fit results:",
                                         width=750,
                                         height=200)

    def proc_all_button_callback():
        for scan, export in zip(det_data, scan_table_source.data["export"]):
            if export:
                pyzebra.fit_scan(scan,
                                 fit_params,
                                 fit_from=fit_from_spinner.value,
                                 fit_to=fit_to_spinner.value)
                pyzebra.get_area(
                    scan,
                    area_method=AREA_METHODS[area_method_radiobutton.active],
                    lorentz=lorentz_checkbox.active,
                )

        _update_plot(_get_selected_scan())
        _update_table()

    proc_all_button = Button(label="Process All",
                             button_type="primary",
                             width=145)
    proc_all_button.on_click(proc_all_button_callback)

    def proc_button_callback():
        scan = _get_selected_scan()
        pyzebra.fit_scan(scan,
                         fit_params,
                         fit_from=fit_from_spinner.value,
                         fit_to=fit_to_spinner.value)
        pyzebra.get_area(
            scan,
            area_method=AREA_METHODS[area_method_radiobutton.active],
            lorentz=lorentz_checkbox.active,
        )

        _update_plot(scan)
        _update_table()

    proc_button = Button(label="Process Current", width=145)
    proc_button.on_click(proc_button_callback)

    area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
    area_method_radiobutton = RadioGroup(labels=["Function", "Area"],
                                         active=0,
                                         width=145)

    lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"],
                                     width=145,
                                     margin=(13, 5, 5, 5))

    export_preview_textinput = TextAreaInput(title="Export file preview:",
                                             width=500,
                                             height=400)

    def _update_preview():
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_file = temp_dir + "/temp"
            export_data = []
            for s, export in zip(det_data, scan_table_source.data["export"]):
                if export:
                    export_data.append(s)

            pyzebra.export_1D(
                export_data,
                temp_file,
                export_target_select.value,
                hkl_precision=int(hkl_precision_select.value),
            )

            exported_content = ""
            file_content = []
            for ext in EXPORT_TARGETS[export_target_select.value]:
                fname = temp_file + ext
                if os.path.isfile(fname):
                    with open(fname) as f:
                        content = f.read()
                        exported_content += f"{ext} file:\n" + content
                else:
                    content = ""
                file_content.append(content)

            js_data.data.update(content=file_content)
            export_preview_textinput.value = exported_content

    def export_target_select_callback(_attr, _old, new):
        js_data.data.update(ext=EXPORT_TARGETS[new])
        _update_preview()

    export_target_select = Select(title="Export target:",
                                  options=list(EXPORT_TARGETS.keys()),
                                  value="fullprof",
                                  width=80)
    export_target_select.on_change("value", export_target_select_callback)
    js_data.data.update(ext=EXPORT_TARGETS[export_target_select.value])

    def hkl_precision_select_callback(_attr, _old, _new):
        _update_preview()

    hkl_precision_select = Select(title="hkl precision:",
                                  options=["2", "3", "4"],
                                  value="2",
                                  width=80)
    hkl_precision_select.on_change("value", hkl_precision_select_callback)

    save_button = Button(label="Download File(s)",
                         button_type="success",
                         width=200)
    save_button.js_on_click(
        CustomJS(args={"js_data": js_data}, code=javaScript))

    fitpeak_controls = row(
        column(fitparams_add_dropdown, fitparams_select,
               fitparams_remove_button),
        fitparams_table,
        Spacer(width=20),
        column(fit_from_spinner, lorentz_checkbox, area_method_div,
               area_method_radiobutton),
        column(fit_to_spinner, proc_button, proc_all_button),
    )

    scan_layout = column(
        scan_table,
        row(monitor_spinner, column(Spacer(height=19), restore_button)),
        row(column(Spacer(height=19), merge_button), merge_from_select),
    )

    import_layout = column(
        proposal_textinput,
        file_select,
        row(file_open_button, file_append_button),
        upload_div,
        upload_button,
        append_upload_div,
        append_upload_button,
    )

    export_layout = column(
        export_preview_textinput,
        row(export_target_select, hkl_precision_select,
            column(Spacer(height=19), row(save_button))),
    )

    tab_layout = column(
        row(import_layout, scan_layout, plot, Spacer(width=30), export_layout),
        row(fitpeak_controls, fit_output_textinput),
    )

    return Panel(child=tab_layout, title="ccl integrate")