Пример #1
0
def test_cmaes_get_best_params_best():
    opt = CMAESOptimizer()
    opt.init(10)
    params = np.empty(10)
    opt.get_next_parameters(params)
    opt.set_evaluation_feedback(np.array([0.0]))
    best_params = opt.get_best_parameters(method="best")
    assert_array_almost_equal(params, best_params)
Пример #2
0
def test_cmaes_respects_bounds():
    opt = CMAESOptimizer(bounds=[[-5, 4], [10, 20]], variance=10000.0,
                         random_state=0)
    opt.init(2)
    params = np.empty(2)
    opt.get_next_parameters(params)
    assert_true(np.all(params >= np.array([-5, 10])))
    assert_true(np.all(params <= np.array([4, 20])))
Пример #3
0
def test_cmaes_stop_fitness_variance():
    opt = CMAESOptimizer(n_samples_per_update=5)
    opt.init(2)
    params = np.empty(2)
    it = 0
    while not opt.is_behavior_learning_done():
        opt.get_next_parameters(params)
        opt.set_evaluation_feedback([0.0])
        it += 1
    assert_equal(it, 6)
Пример #4
0
def test_cmaes_stop_conditioning():
    def objective(x):
        return -1e10 * x[1] ** 2

    opt = CMAESOptimizer(random_state=0)
    opt.init(2)
    params = np.empty(2)
    it = 0
    while not opt.is_behavior_learning_done():
        opt.get_next_parameters(params)
        opt.set_evaluation_feedback(objective(params))
        it += 1
    assert_less(it, 600)
Пример #5
0
def test_acmaes():
    x = np.zeros(n_dims)
    opt = CMAESOptimizer(x, active=True, random_state=0, log_to_stdout=False)
    opt.init(n_dims)
    r = eval_loop(x, opt, n_dims)
    assert_greater(r.max(), -1e-5)
Пример #6
0

n_generations = 20
n_samples_per_update = 20
n_params = 2


for objective_name in ["Sphere", "SchaffersF7"]:
    objective = FUNCTIONS[objective_name](0, n_params)

    initial_params = 4.0 * np.ones(n_params)
    cmaes = CMAESOptimizer(
        initial_params=initial_params, variance=0.1, active=True,
        n_samples_per_update=n_samples_per_update,
        bounds=np.array([[-5, 5], [-5, 5]]), random_state=0)
    cmaes.init(n_params)

    n_rows = 4
    plt.figure(figsize=(n_generations * 3 / n_rows, 3 * n_rows))
    path = []
    for it in range(n_generations):
        plt.subplot(n_rows, int(n_generations / n_rows, it + 1))
        plot_objective()
        last_mean = cmaes.mean.copy()
        path.append(last_mean)
        last_cov = cmaes.var * cmaes.cov

        X = np.empty((n_samples_per_update, n_params))
        F = np.empty((n_samples_per_update, 1))
        for i in range(n_samples_per_update):
            cmaes.get_next_parameters(X[i])
Пример #7
0
def test_cmaes_no_initial_params():
    opt = CMAESOptimizer()
    opt.init(10)
    params = np.empty(10)
    opt.get_next_parameters(params)
Пример #8
0
def test_cmaes_diagonal_cov():
    opt = CMAESOptimizer(covariance=np.zeros(10))
    opt.init(10)
    params = np.empty(10)
    opt.get_next_parameters(params)