def plot_g_h_results(measurements, filtered_data, title='', z_label='Measurements', **kwargs): book_plots.plot_filter(filtered_data, **kwargs) book_plots.plot_measurements(measurements, label=z_label) book_plots.show_legend() plt.title(title) plt.gca().set_xlim(left=0,right=len(measurements))
def plot_dog_track(xs, dog, measurement_var, process_var): N = len(xs) bp.plot_track(dog) bp.plot_measurements(xs, label='Sensor') bp.set_labels('variance = {}, process variance = {}'.format( measurement_var, process_var), 'time', 'pos') plt.ylim([0, N]) bp.show_legend() plt.show()
def plot_dog_track(xs, measurement_var, process_var): N = len(xs) bp.plot_track([0, N-1], [1, N]) bp.plot_measurements(xs, label='Sensor') bp.set_labels('variance = {}, process variance = {}'.format( measurement_var, process_var), 'time', 'pos') plt.ylim([0, N]) bp.show_legend() plt.show()
def plot_g_h_results(measurements, filtered_data, title='', z_label='Measurements', **kwargs): book_plots.plot_filter(filtered_data, **kwargs) book_plots.plot_measurements(measurements, label=z_label) book_plots.show_legend() plt.title(title) plt.gca().set_xlim(left=0, right=len(measurements))
def plot_track(ps, actual, zs, cov, std_scale=1, plot_P=True, y_lim=None, dt=1., xlabel='time', ylabel='position', title='Kalman Filter'): count = len(zs) zs = np.asarray(zs) cov = np.asarray(cov) std = std_scale * np.sqrt(cov[:, 0, 0]) std_top = np.minimum(actual + std, [count + 10]) std_btm = np.maximum(actual - std, [-50]) std_top = actual + std std_btm = actual - std bp.plot_track(actual, c='k') bp.plot_measurements(range(1, count + 1), zs) bp.plot_filter(range(1, count + 1), ps) plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4) plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4) plt.fill_between(range(len(std_top)), std_top, std_btm, facecolor='yellow', alpha=0.2, interpolate=True) plt.legend(loc=4) plt.xlabel(xlabel) plt.ylabel(ylabel) if y_lim is not None: plt.ylim(y_lim) else: plt.ylim((-50, count + 10)) plt.xlim((0, count)) plt.title(title) plt.show() if plot_P: ax = plt.subplot(121) ax.set_title("$\sigma^2_x$ (pos variance)") plot_covariance(cov, (0, 0)) ax = plt.subplot(122) ax.set_title("$\sigma^2_\dot{x}$ (vel variance)") plot_covariance(cov, (1, 1)) plt.show()
def plot_gh_results(weights, estimates, predictions): n = len(weights) xs = list(range(n+1)) book_plots.plot_filter(xs, estimates, marker='o') book_plots.plot_measurements(xs[1:], weights, color='k', label='Scale', lines=False) book_plots.plot_track([0, n], [160, 160+n], c='k', label='Actual Weight') book_plots.plot_track(xs[1:], predictions, c='r', label='Predictions', marker='v') book_plots.show_legend() book_plots.set_labels(x='day', y='weight (lbs)') plt.xlim([0, n]) plt.show()
def plot_track_and_residuals(t, xs, z_xs, res): plt.subplot(121) bp.plot_measurements(t, z_xs, label='z') bp.plot_filter(t, xs) plt.legend(loc=2) plt.xlabel('time (sec)') plt.ylabel('X') plt.title('estimates vs measurements') plt.subplot(122) # plot twice so it has the same color as the plot to the left! plt.plot(t, res) plt.plot(t, res) plt.xlabel('time (sec)') plt.ylabel('residual') plt.title('residuals') plt.show()
def plot_track_and_residuals(t, xs, z_xs, res): plt.subplot(121) if z_xs is not None: bp.plot_measurements(t, z_xs, label='z') bp.plot_filter(t, xs) plt.legend(loc=2) plt.xlabel('time (sec)') plt.ylabel('X') plt.title('estimates vs measurements') plt.subplot(122) # plot twice so it has the same color as the plot to the left! plt.plot(t, res) plt.plot(t, res) plt.xlabel('time (sec)') plt.ylabel('residual') plt.title('residuals') plt.show()
def plot_track(ps, actual, zs, cov, std_scale=1, plot_P=True, y_lim=None, dt=1., xlabel='time', ylabel='position', title='Kalman Filter'): count = len(zs) zs = np.asarray(zs) cov = np.asarray(cov) std = std_scale*np.sqrt(cov[:,0,0]) std_top = np.minimum(actual+std, [count + 10]) std_btm = np.maximum(actual-std, [-50]) std_top = actual + std std_btm = actual - std bp.plot_track(actual,c='k') bp.plot_measurements(range(1, count + 1), zs) bp.plot_filter(range(1, count + 1), ps) plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4) plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4) plt.fill_between(range(len(std_top)), std_top, std_btm, facecolor='yellow', alpha=0.2, interpolate=True) plt.legend(loc=4) plt.xlabel(xlabel) plt.ylabel(ylabel) if y_lim is not None: plt.ylim(y_lim) else: plt.ylim((-50, count + 10)) plt.xlim((0,count)) plt.title(title) plt.show() if plot_P: ax = plt.subplot(121) ax.set_title("$\sigma^2_x$ (pos variance)") plot_covariance(cov, (0, 0)) ax = plt.subplot(122) ax.set_title("$\sigma^2_\dot{x}$ (vel variance)") plot_covariance(cov, (1, 1)) plt.show()
def plot_track_ellipses(N, zs, ps, cov, title): bp.plot_measurements(range(1,N + 1), zs) plt.plot(range(1, N + 1), ps, c='b', lw=2, label='filter') plt.legend(loc='best') plt.title(title) for i,p in enumerate(cov): plot_covariance_ellipse( (i+1, ps[i]), cov=p, variance=4, axis_equal=False, ec='g', alpha=0.5) if i == len(cov)-1: s = ('$\sigma^2_{pos} = %.2f$' % p[0,0]) plt.text (20, 5, s, fontsize=18) s = ('$\sigma^2_{vel} = %.2f$' % p[1, 1]) plt.text (20, 0, s, fontsize=18) plt.xlim(-10, 80) plt.gca().set_aspect('equal') plt.show()
def fusion_test(wheel_sigma, ps_sigma, do_plot=True): dt = 0.1 kf = KalmanFilter(dim_x=2, dim_z=2) kf.F = array([[1., dt], [0., 1.]]) kf.H = array([[1., 0.], [1., 0.]]) kf.x = array([[0.], [1.]]) kf.Q *= array([[(dt**3)/3, (dt**2)/2], [(dt**2)/2, dt ]]) * 0.02 kf.P *= 100 kf.R[0, 0] = wheel_sigma**2 kf.R[1, 1] = ps_sigma**2 random.seed(1123) xs, zs, nom = [], [], [] for i in range(1, 100): m0 = i + randn()*wheel_sigma m1 = i + randn()*ps_sigma z = array([[m0], [m1]]) kf.predict() kf.update(z) xs.append(kf.x.T[0]) zs.append(z.T[0]) nom.append(i) xs = array(xs) zs = array(zs) nom = array(nom) res = nom - xs[:, 0] #print('fusion std: {:.3f}'.format(np.std(res))) ts = np.arange(0.1, 10, .1) bp.plot_measurements(ts, zs[:, 0], label='Wheel') plt.plot(ts, zs[:, 1], ls='--', label='Pos Sensor') bp.plot_filter(ts, xs[:, 0], label='Kalman filter') plt.legend(loc=4) plt.ylim(0, 100) bp.set_labels(x='time (sec)', y='meters') plt.show()
def plot_track(ps, zs, cov, plot_P=True, y_lim=None, title='Kalman Filter'): count = len(zs) actual = np.linspace(0, count - 1, count) cov = np.asarray(cov) std = np.sqrt(cov[:, 0, 0]) std_top = np.minimum(actual + std, [count + 10]) std_btm = np.maximum(actual - std, [-50]) std_top = actual + std std_btm = actual - std bp.plot_track(actual, c='k') bp.plot_measurements(range(1, count + 1), zs) bp.plot_filter(range(1, count + 1), ps) plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4) plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4) plt.fill_between(range(len(std_top)), std_top, std_btm, facecolor='yellow', alpha=0.2, interpolate=True) plt.legend(loc=4) if y_lim is not None: plt.ylim(y_lim) else: plt.ylim((-50, count + 10)) plt.xlim((0, count)) plt.title(title) plt.show() if plot_P: ax = plt.subplot(121) ax.set_title("$\sigma^2_x$") plot_covariance(cov, (0, 0)) ax = plt.subplot(122) ax.set_title("$\sigma^2_y$") plot_covariance(cov, (1, 1)) plt.show()
def plot_gh_results(weights, estimates, predictions): n = len(weights) xs = list(range(n + 1)) book_plots.plot_filter(xs, estimates, marker='o') book_plots.plot_measurements(xs[1:], weights, color='k', label='Scale', lines=False) book_plots.plot_track([0, n], [160, 160 + n], c='k', label='Actual Weight') book_plots.plot_track(xs[1:], predictions, c='r', label='Predictions', marker='v') book_plots.show_legend() book_plots.set_labels(x='day', y='weight (lbs)') plt.xlim([0, n]) plt.show()
def plot_track(ps, zs, cov, plot_P=True, y_lim=None, title='Kalman Filter'): count = len(zs) actual = np.linspace(0, count - 1, count) cov = np.asarray(cov) std = np.sqrt(cov[:,0,0]) std_top = np.minimum(actual+std, [count + 10]) std_btm = np.maximum(actual-std, [-50]) std_top = actual+std std_btm = actual-std bp.plot_track(actual,c='k') bp.plot_measurements(range(1, count + 1), zs) bp.plot_filter(range(1, count + 1), ps) plt.plot(std_top, linestyle=':', color='k', lw=1, alpha=0.4) plt.plot(std_btm, linestyle=':', color='k', lw=1, alpha=0.4) plt.fill_between(range(len(std_top)), std_top, std_btm, facecolor='yellow', alpha=0.2, interpolate=True) plt.legend(loc=4) if y_lim is not None: plt.ylim(y_lim) else: plt.ylim((-50, count + 10)) plt.xlim((0,count)) plt.title(title) plt.show() if plot_P: ax = plt.subplot(121) ax.set_title("$\sigma^2_x$") plot_covariance(cov, (0, 0)) ax = plt.subplot(122) ax.set_title("$\sigma^2_y$") plot_covariance(cov, (1, 1)) plt.show()
if __name__=='__main__': if False: # fixme: vary R and Q N = 30 sensor = PosSensor1 ((0, 0), (2, 1), 1.) zs = np.array([np.array([sensor.read()]).T for _ in range(N)]) # run filter robot_tracker = tracker1() mu, cov, _, _ = robot_tracker.batch_filter(zs) for x, P in zip(mu, cov): # covariance of x and y cov = np.array([[P[0, 0], P[2, 0]], [P[0, 2], P[2, 2]]]) mean = (x[0, 0], x[2, 0]) plot_covariance_ellipse(mean, cov=cov, fc='g', alpha=0.15) print robot_tracker.P # plot results zs *= .3048 # convert to meters bp.plot_filter(mu[:, 0], mu[:, 2]) bp.plot_measurements(zs[:, 0], zs[:, 1]) plt.legend(loc=2) plt.gca().set_aspect('equal') plt.xlim((0, 20)); if True: a()
def a(): class ConstantVelocityObject(object): def __init__(self, x0=0, vel=1., noise_scale=0.06): self.x = x0 self.vel = vel self.noise_scale = noise_scale def update(self): self.vel += randn() * self.noise_scale self.x += self.vel return (self.x, self.vel) def sense(x, noise_scale=1.): return x[0] + randn()*noise_scale np.random.seed(124) obj = ConstantVelocityObject() xs, zs = [], [] for i in range(50): x = obj.update() z = sense(x) xs.append(x) zs.append(z) xs = np.asarray(xs) bp.plot_track(xs[:, 0]) bp.plot_measurements(range(len(zs)), zs) plt.legend(loc='best'); def ZeroOrderKF(R, Q, P=20): """ Create zero order Kalman filter. Specify R and Q as floats.""" kf = KalmanFilter(dim_x=1, dim_z=1) kf.x = np.array([0.]) kf.R *= R kf.Q *= Q kf.P *= P kf.F = np.eye(1) kf.H = np.eye(1) return kf def FirstOrderKF(R, Q, dt): """ Create first order Kalman filter. Specify R and Q as floats.""" kf = KalmanFilter(dim_x=2, dim_z=1) kf.x = np.zeros(2) kf.P *= np.array([[100, 0], [0, 1]]) kf.R *= R kf.Q = Q_discrete_white_noise(2, dt, Q) kf.F = np.array([[1., dt], [0., 1]]) kf.H = np.array([[1., 0]]) return kf def SecondOrderKF(R_std, Q, dt, P=100): """ Create second order Kalman filter. Specify R and Q as floats.""" kf = KalmanFilter(dim_x=3, dim_z=1) kf.x = np.zeros(3) kf.P[0, 0] = P kf.P[1, 1] = 1 kf.P[2, 2] = 1 kf.R *= R_std**2 kf.Q = Q_discrete_white_noise(3, dt, Q) kf.F = np.array([[1., dt, .5*dt*dt], [0., 1., dt], [0., 0., 1.]]) kf.H = np.array([[1., 0., 0.]]) return kf def simulate_system(Q, count): obj = ConstantVelocityObject(x0=.0, vel=0.5, noise_scale=Q) xs, zs = [], [] for i in range(count): x = obj.update() z = sense(x) xs.append(x) zs.append(z) return np.asarray(xs), np.asarray(zs) def filter_data(kf, zs): xs, ps = [], [] for z in zs: kf.predict() kf.update(z) xs.append(kf.x) ps.append(kf.P.diagonal()) # just save variances return np.asarray(xs), np.asarray(ps) def plot_residuals(xs, filter_xs, Ps, title, y_label, stds=1): res = xs - filter_xs plt.plot(res) bp.plot_residual_limits(Ps, stds) bp.set_labels(title, 'time (sec)', y_label) plt.show() # 1 R, Q = 1, 0.03 xs, zs = simulate_system(Q=Q, count=50) kf = FirstOrderKF(R, Q, dt=1) filter_xs1, ps1 = filter_data(kf, zs) plt.figure() bp.plot_kf_output(xs, filter_xs1, zs) plot_residuals(xs[:, 0], filter_xs1[:, 0], ps1[:, 0], title='First Order Position Residuals(1$\sigma$)', y_label='meters') plot_residuals(xs[:, 1], filter_xs1[:, 1], ps1[:, 1], title='First Order Velocity Residuals(1$\sigma$)', y_label='meters/sec') kf0 = ZeroOrderKF(R, Q) filter_xs0, ps0 = filter_data(kf0, zs) plot_kf_output(xs, filter_xs0, zs)