Пример #1
0
 def __init__(self, *args, **kwargs):
     super(LuisRecognizerTest, self).__init__(*args, **kwargs)
     self._mocked_results: RecognizerResult = RecognizerResult(
         intents={"Test": IntentScore(score=0.2), "Greeting": IntentScore(score=0.4)}
     )
     self._empty_luis_response: Dict[str, object] = json.loads(
         '{ "query": null, "intents": [], "entities": [] }'
     )
Пример #2
0
 def get_intents(luis_result: LuisResult) -> Dict[str, IntentScore]:
     if luis_result.intents is not None:
         return {
             LuisUtil.normalized_intent(i.intent): IntentScore(i.score or 0)
             for i in luis_result.intents
         }
     return {
         LuisUtil.normalized_intent(luis_result.top_scoring_intent.intent):
         IntentScore(luis_result.top_scoring_intent.score or 0)
     }
Пример #3
0
def top_intent(intents: Dict[Intent, dict]) -> TopIntent:
    max_intent = Intent.NONE_INTENT
    max_value = 0.0

    for intent, value in intents:
        intent_score = IntentScore(value)
        if intent_score.score > max_value:
            max_intent, max_value = intent, intent_score.score

    return TopIntent(max_intent, max_value)
Пример #4
0
    def _get_intents(self, luis_result):
        intents = {}
        if not luis_result["intents"]:
            return intents

        for intent in luis_result["intents"]:
            intents[self._normalize_name(intent)] = IntentScore(
                luis_result["intents"][intent]["score"]
            )

        return intents
Пример #5
0
def top_intent(intents: Dict[Intent, dict]) -> TopIntent:
    """
    This function determines the top intention of a user.
    """
    max_intent = Intent.NONE_INTENT
    max_value = 0.0

    for intent, value in intents:
        intent_score = IntentScore(value)
        if intent_score.score > max_value:
            max_intent, max_value = intent, intent_score.score

    return TopIntent(max_intent, max_value)
    async def _recognize_internal(
        self,
        turn_context: TurnContext,
        telemetry_properties: Dict[str, str],
        telemetry_metrics: Dict[str, float],
        luis_prediction_options: Union[LuisPredictionOptions,
                                       LuisRecognizerOptionsV2,
                                       LuisRecognizerOptionsV3] = None,
    ) -> RecognizerResult:

        BotAssert.context_not_none(turn_context)

        if turn_context.activity.type != ActivityTypes.message:
            return None

        utterance: str = turn_context.activity.text if turn_context.activity is not None else None
        recognizer_result: RecognizerResult = None

        if luis_prediction_options:
            options = luis_prediction_options
        else:
            options = self._options

        if not utterance or utterance.isspace():
            recognizer_result = RecognizerResult(
                text=utterance,
                intents={"": IntentScore(score=1.0)},
                entities={})
        else:

            luis_recognizer = self._build_recognizer(options)
            recognizer_result = await luis_recognizer.recognizer_internal(
                turn_context)

        # Log telemetry
        self.on_recognizer_result(recognizer_result, turn_context,
                                  telemetry_properties, telemetry_metrics)

        return recognizer_result
    async def _recognize_internal(
        self,
        turn_context: TurnContext,
        telemetry_properties: Dict[str, str],
        telemetry_metrics: Dict[str, float],
        luis_prediction_options: LuisPredictionOptions = None,
    ) -> RecognizerResult:

        BotAssert.context_not_none(turn_context)

        if turn_context.activity.type != ActivityTypes.message:
            return None

        utterance: str = turn_context.activity.text if turn_context.activity is not None else None
        recognizer_result: RecognizerResult = None
        luis_result: LuisResult = None

        if luis_prediction_options:
            options = self._merge_options(luis_prediction_options)
        else:
            options = self._options

        if not utterance or utterance.isspace():
            recognizer_result = RecognizerResult(
                text=utterance,
                intents={"": IntentScore(score=1.0)},
                entities={})
        else:
            luis_result = self._runtime.prediction.resolve(
                self._application.application_id,
                utterance,
                timezone_offset=options.timezone_offset,
                verbose=options.include_all_intents,
                staging=options.staging,
                spell_check=options.spell_check,
                bing_spell_check_subscription_key=options.
                bing_spell_check_subscription_key,
                log=options.log if options.log is not None else True,
            )

            recognizer_result = RecognizerResult(
                text=utterance,
                altered_text=luis_result.altered_query,
                intents=LuisUtil.get_intents(luis_result),
                entities=LuisUtil.extract_entities_and_metadata(
                    luis_result.entities,
                    luis_result.composite_entities,
                    options.include_instance_data
                    if options.include_instance_data is not None else True,
                ),
            )
            LuisUtil.add_properties(luis_result, recognizer_result)
            if self._include_api_results:
                recognizer_result.properties["luisResult"] = luis_result

        # Log telemetry
        self.on_recognizer_result(recognizer_result, turn_context,
                                  telemetry_properties, telemetry_metrics)

        await self._emit_trace_info(turn_context, luis_result,
                                    recognizer_result, options)

        return recognizer_result