Пример #1
0
    def test_sample_points_around_best(self):
        tkwargs = {"device": self.device}
        _bounds = torch.ones(2, 2)
        _bounds[1] = 2
        for dtype in (torch.float, torch.double):
            tkwargs["dtype"] = dtype
            bounds = _bounds.to(**tkwargs)
            X_train = 1 + torch.rand(20, 2, **tkwargs)
            model = MockModel(
                MockPosterior(mean=(2 * X_train + 1).sum(dim=-1, keepdim=True))
            )
            # test NEI with X_baseline
            acqf = qNoisyExpectedImprovement(model, X_baseline=X_train)
            with mock.patch(
                "botorch.optim.initializers.sample_perturbed_subset_dims"
            ) as mock_subset_dims:
                X_rnd = sample_points_around_best(
                    acq_function=acqf,
                    n_discrete_points=4,
                    sigma=1e-3,
                    bounds=bounds,
                )
                mock_subset_dims.assert_not_called()
            self.assertTrue(X_rnd.shape, torch.Size([4, 2]))
            self.assertTrue((X_rnd >= 1).all())
            self.assertTrue((X_rnd <= 2).all())
            # test model that returns a batched mean
            model = MockModel(
                MockPosterior(
                    mean=(2 * X_train + 1).sum(dim=-1, keepdim=True).unsqueeze(0)
                )
            )
            acqf = qNoisyExpectedImprovement(model, X_baseline=X_train)
            X_rnd = sample_points_around_best(
                acq_function=acqf,
                n_discrete_points=4,
                sigma=1e-3,
                bounds=bounds,
            )
            self.assertTrue(X_rnd.shape, torch.Size([4, 2]))
            self.assertTrue((X_rnd >= 1).all())
            self.assertTrue((X_rnd <= 2).all())

            # test EI without X_baseline
            acqf = qExpectedImprovement(model, best_f=0.0)

            with warnings.catch_warnings(record=True) as w, settings.debug(True):

                X_rnd = sample_points_around_best(
                    acq_function=acqf,
                    n_discrete_points=4,
                    sigma=1e-3,
                    bounds=bounds,
                )
                self.assertEqual(len(w), 1)
                self.assertTrue(issubclass(w[-1].category, BotorchWarning))
                self.assertIsNone(X_rnd)

            # set train inputs
            model.train_inputs = (X_train,)
            X_rnd = sample_points_around_best(
                acq_function=acqf,
                n_discrete_points=4,
                sigma=1e-3,
                bounds=bounds,
            )
            self.assertTrue(X_rnd.shape, torch.Size([4, 2]))
            self.assertTrue((X_rnd >= 1).all())
            self.assertTrue((X_rnd <= 2).all())

            # test an acquisition function that has objective=None
            # and maximize=False
            pm = PosteriorMean(model, maximize=False)
            self.assertIsNone(pm.objective)
            self.assertFalse(pm.maximize)
            X_rnd = sample_points_around_best(
                acq_function=pm,
                n_discrete_points=4,
                sigma=0,
                bounds=bounds,
                best_pct=1e-8,  # ensures that we only use best value
            )
            idx = (-model.posterior(X_train).mean).argmax()
            self.assertTrue((X_rnd == X_train[idx : idx + 1]).all(dim=-1).all())

            # test acquisition function that has no model
            ff = FixedFeatureAcquisitionFunction(pm, d=2, columns=[0], values=[0])
            # set X_baseline for testing purposes
            ff.X_baseline = X_train
            with warnings.catch_warnings(record=True) as w, settings.debug(True):
                X_rnd = sample_points_around_best(
                    acq_function=ff,
                    n_discrete_points=4,
                    sigma=1e-3,
                    bounds=bounds,
                )
                self.assertEqual(len(w), 1)
                self.assertTrue(issubclass(w[-1].category, BotorchWarning))
                self.assertIsNone(X_rnd)

            # test constraints with NEHVI
            constraints = [lambda Y: Y[..., 0]]
            ref_point = torch.zeros(2, **tkwargs)
            # test cases when there are and are not any feasible points
            for any_feas in (True, False):
                Y_train = torch.stack(
                    [
                        torch.linspace(-0.5, 0.5, X_train.shape[0], **tkwargs)
                        if any_feas
                        else torch.ones(X_train.shape[0], **tkwargs),
                        X_train.sum(dim=-1),
                    ],
                    dim=-1,
                )
                moo_model = MockModel(MockPosterior(mean=Y_train, samples=Y_train))
                acqf = qNoisyExpectedHypervolumeImprovement(
                    moo_model,
                    ref_point=ref_point,
                    X_baseline=X_train,
                    constraints=constraints,
                    cache_root=False,
                )
                X_rnd = sample_points_around_best(
                    acq_function=acqf,
                    n_discrete_points=4,
                    sigma=0.0,
                    bounds=bounds,
                )
                self.assertTrue(X_rnd.shape, torch.Size([4, 2]))
                # this should be true since sigma=0
                # and we should only be returning feasible points
                violation = constraints[0](Y_train)
                neg_violation = -violation.clamp_min(0.0)
                feas = neg_violation == 0
                eq_mask = (X_train.unsqueeze(1) == X_rnd.unsqueeze(0)).all(dim=-1)
                if feas.any():
                    # determine
                    # create n_train x n_rnd tensor of booleans
                    eq_mask = (X_train.unsqueeze(1) == X_rnd.unsqueeze(0)).all(dim=-1)
                    # check that all X_rnd correspond to feasible points
                    self.assertEqual(eq_mask[feas].sum(), 4)
                else:
                    idcs = torch.topk(neg_violation, k=2).indices
                    self.assertEqual(eq_mask[idcs].sum(), 4)
                self.assertTrue((X_rnd >= 1).all())
                self.assertTrue((X_rnd <= 2).all())
            # test that subset_dims is called if d>=21
            X_train = 1 + torch.rand(20, 21, **tkwargs)
            model = MockModel(
                MockPosterior(mean=(2 * X_train + 1).sum(dim=-1, keepdim=True))
            )
            bounds = torch.ones(2, 21, **tkwargs)
            bounds[1] = 2
            # test NEI with X_baseline
            acqf = qNoisyExpectedImprovement(model, X_baseline=X_train)
            with mock.patch(
                "botorch.optim.initializers.sample_perturbed_subset_dims",
                wraps=sample_perturbed_subset_dims,
            ) as mock_subset_dims:
                X_rnd = sample_points_around_best(
                    acq_function=acqf, n_discrete_points=5, sigma=1e-3, bounds=bounds
                )
            self.assertTrue(X_rnd.shape, torch.Size([5, 2]))
            self.assertTrue((X_rnd >= 1).all())
            self.assertTrue((X_rnd <= 2).all())
            mock_subset_dims.assert_called_once()
            # test tiny prob_perturb to make sure we perturb at least one dimension
            X_rnd = sample_points_around_best(
                acq_function=acqf,
                n_discrete_points=5,
                sigma=1e-3,
                bounds=bounds,
                prob_perturb=1e-8,
            )
            self.assertTrue(
                ((X_rnd.unsqueeze(0) == X_train.unsqueeze(1)).all(dim=-1)).sum() == 0
            )
Пример #2
0
    def test_get_X_baseline(self):
        tkwargs = {"device": self.device}
        for dtype in (torch.float, torch.double):
            tkwargs["dtype"] = dtype
            X_train = torch.rand(20, 2, **tkwargs)
            model = MockModel(
                MockPosterior(mean=(2 * X_train +
                                    1).sum(dim=-1, keepdim=True)))
            # test NEI with X_baseline
            acqf = qNoisyExpectedImprovement(model, X_baseline=X_train[:2])
            X = get_X_baseline(acq_function=acqf)
            self.assertTrue(torch.equal(X, acqf.X_baseline))
            # test EI without X_baseline
            acqf = qExpectedImprovement(model, best_f=0.0)

            with warnings.catch_warnings(
                    record=True) as w, settings.debug(True):

                X_rnd = get_X_baseline(acq_function=acqf, )
                self.assertEqual(len(w), 1)
                self.assertTrue(issubclass(w[-1].category, BotorchWarning))
                self.assertIsNone(X_rnd)

            # set train inputs
            model.train_inputs = (X_train, )
            X = get_X_baseline(acq_function=acqf, )
            self.assertTrue(torch.equal(X, X_train))
            # test that we fail back to train_inputs if X_baseline is an empty tensor
            acqf.register_buffer("X_baseline", X_train[:0])
            X = get_X_baseline(acq_function=acqf, )
            self.assertTrue(torch.equal(X, X_train))

            # test acquisitipon function without X_baseline or model
            acqf = FixedFeatureAcquisitionFunction(acqf,
                                                   d=2,
                                                   columns=[0],
                                                   values=[0])
            with warnings.catch_warnings(
                    record=True) as w, settings.debug(True):
                X_rnd = get_X_baseline(acq_function=acqf, )
                self.assertEqual(len(w), 1)
                self.assertTrue(issubclass(w[-1].category, BotorchWarning))
                self.assertIsNone(X_rnd)

            Y_train = 2 * X_train[:2] + 1
            moo_model = MockModel(MockPosterior(mean=Y_train, samples=Y_train))
            ref_point = torch.zeros(2, **tkwargs)
            # test NEHVI with X_baseline
            acqf = qNoisyExpectedHypervolumeImprovement(
                moo_model,
                ref_point=ref_point,
                X_baseline=X_train[:2],
                cache_root=False,
            )
            X = get_X_baseline(acq_function=acqf, )
            self.assertTrue(torch.equal(X, acqf.X_baseline))
            # test qEHVI without train_inputs
            acqf = qExpectedHypervolumeImprovement(
                moo_model,
                ref_point=ref_point,
                partitioning=FastNondominatedPartitioning(
                    ref_point=ref_point,
                    Y=Y_train,
                ),
            )
            # test extracting train_inputs from model list GP
            model_list = ModelListGP(
                SingleTaskGP(X_train, Y_train[:, :1]),
                SingleTaskGP(X_train, Y_train[:, 1:]),
            )
            acqf = qExpectedHypervolumeImprovement(
                model_list,
                ref_point=ref_point,
                partitioning=FastNondominatedPartitioning(
                    ref_point=ref_point,
                    Y=Y_train,
                ),
            )
            X = get_X_baseline(acq_function=acqf, )
            self.assertTrue(torch.equal(X, X_train))

            # test MESMO for which we need to use
            # `acqf.mo_model`
            batched_mo_model = SingleTaskGP(X_train, Y_train)
            acqf = qMultiObjectiveMaxValueEntropy(
                batched_mo_model,
                sample_pareto_frontiers=lambda model: torch.rand(
                    10, 2, **tkwargs),
            )
            X = get_X_baseline(acq_function=acqf, )
            self.assertTrue(torch.equal(X, X_train))
            # test that if there is an input transform that is applied
            # to the train_inputs when the model is in eval mode, we
            # extract the untransformed train_inputs
            model = SingleTaskGP(X_train,
                                 Y_train[:, :1],
                                 input_transform=Warp(indices=[0, 1]))
            model.eval()
            self.assertFalse(torch.equal(model.train_inputs[0], X_train))
            acqf = qExpectedImprovement(model, best_f=0.0)
            X = get_X_baseline(acq_function=acqf, )
            self.assertTrue(torch.equal(X, X_train))