Пример #1
0
def ssa_denoise_recon(st, p, flow, fhigh):
	"""
	SSA method, that de-noises the data given in stream by a rank reduction of the singular values of the
	Hankel matrix, created from the data in st and the sampling interval of the traces, to p.

 	:param st:     Stream of data
	:type  st:

	:param dt:     sampling interval
	:type  dt: 	   float

	:param p:      number of singular values used to reconstuct the data
	:type  p:	   int
	
	:param flow:   min  freq. in the data in Hz
	:type  flow:   float

	:param fhigh:  max  freq. in the data in Hz
	:type  fhigh:  float


	Example
	st = stream
	dt = st[0].stats.delta
	p = 4
	flow = 1
	fhigh = 250

	st_ssa = ssa_denoise_recon(st, dt, p, flow, fhigh)
	"""
	st_tmp = st.copy()
	
	data = stream2array(st_tmp)

	dt = st_tmp[0].stats.delta

	data_ssa = fx_ssa(data,dt,p,flow,fhigh)
	
	st_ssa = array2stream(data_ssa, st_tmp)
	
	return st_ssa
Пример #2
0
def plot_sigma(sigma, stream, fs=20, ylimit=None):
    si_stream = array2stream(sigma, stream)
    plot(si_stream[0], ylabel='sigma', yticks=True, fs=fs, ylimit=ylimit)
    return
Пример #3
0
def fk_reconstruct(st, slopes=[-10,10], deltaslope=0.05, slopepicking=False, smoothpicks=False, dist=0.5, maskshape=['boxcar',None],
                    method='denoise', solver="iterative",  mu=5e-2, tol=1e-12, fulloutput=False, peakinput=False, alpha=0.9):
    """
    This functions reconstructs missing signals in the f-k domain, using the original data,
    including gaps, filled with zeros, and its Mask-array (see makeMask, and slope_distribution.
    If all traces are avaiable it is a useful method to de-noise the data.
    Uses the following cost function to minimize:

            J = ||dv - T FHmtx2D Yw Dv ||^{2}_{2} + mu^2 ||Dv||^{2}_{2}

            J := Cost function
            dv:= Column-wise-ordered long vector of the 2D signal d (columns: t-domain, rows: x-domain)
            DV:= Column-wise-ordered long vector of the	f-k-spectrum D ( columns: f-domain, rows: k-domain)
            Yw := Diagonal matrix built from the column-wise-ordered long vector of Mask
            T := Sampling matrix which maps the fully sampled desired seismic data to the available samples.
                 For de-noising problems T = I (identity matrix)
            mu := Trade-off parameter between misfit and model norm


    Minimizing is done via a method of the LSMR solver, de-noising (1-2 iterations), reconstruction(8-10) iterations.
    T FHmtx2D Yw Dv will be formed to one matrix A, so at the end the equation system that will be solved has the form:

                            |   A    |		  | dv |
                            |    	 | * Dv = |    |
                            | mu * I |		  | 0  |


    :param st: Stream with missing traces, to be reconstructed or complete stream to be de-noised
    :type  st: obspy.core.stream.Stream

    :param slopes: Range of slopes to investigate for mask-function
    :type  slopes: list

    :param deltaslope: stepsize inbetween slopes.
    :type  deltaslope: float

    :param slopepicking: If True peaks of slopedistribution can be picked by hand.
    :type  slopepicking: bool

    :param smoothpicks: Determines the smoothing of the Slopedistribution, default off. If enabled the distribution ist smoothened by
                        convoluting it with a boxcar of size smoothpicks.
    :type  smoothpicks: int

    :param dist: Minimum distance inbetween maximum picks.
    :type  dist: float

    :param maskshape: maskshape[0] describes the shape of the lobes of the mask. Possible inputs are:
                 -boxcar (default)
                 -taper
                 -butterworth

                  maskshape[1] is an additional attribute to the shape of taper and butterworth, for:
                 -taper: maskshape[1] = slope of sides
                 -butterworth: maskshape[1] = number of poles

                 e.g.: maskshape['taper', 2] produces a symmetric taper with slope of side = 2.


    :type  maskshape: list

    :param method: Desired fk-method, options are 'denoise' and 'interpolate'
    :type  method: string

    :param solver: Solver used for method. Options are 'lsqr' and 'iterative'.
                   If method is 'denoise' only the iterative solver is used.
    :type  solver: string

    :param mu:	Damping parameter for the solver
    :type  mu:	float

    :param tol: Tolerance for solver to abort iteration.
    :type  tol: float

    :param fulloutput: If True, the function additionally outputs FH, dv, Dv, Ts and Yw
    :type  fulloutput: bool

    :param peakinput: Chosen peaks of the distribution, insert here if the peaks are not to be meant to recalculated
    :type  peakinput: np.ndarray

    ######  returns:

    :param st_rec: Stream with reconstructed signals on the missing traces
    :type  st_rec: obspy.core.stream.Stream

    ## if fulloutput=True

    :param st_rec: Stream with reconstructed signals on the missing traces
    :type  st_rec: obspy.core.stream.Stream

    :param FH: 2DiFFT-matrix for column-wise ordered longvector of the f-k spectrum
    :type  FH: scipy.sparse.csc.csc_matrix

    :param dv: Column-wise ordered longvector of the t-x data
    :type  dv: numpy.ndarray

    :param Dv: Column-wise ordered longvector of the f-k spectrum of dv
    :type  Dv: numpy.ndarray

    :param Ts: Sampling-matrix, which maps desired to available data
    :type  Ts: scipy.sparse.dia.dia_matrix

    :param Yw: Diagonal matrix constructed of the column-wise ordered longvector of the mask-matrix
    :type  Yw: scipy.sparse.dia.dia_matrix

    Example:
                from obspy import read as read_st
                import sipy

                stream = read_st("../data/synthetics_uniform/SUNEW.QHD")

                #Example around PP.
                stream_org = st.copy()
                d = bowpy.util.array_util.stream2array(stream_org)
                ArrayData = np.zeros((d.shape[0], 300))
                for i, trace in enumerate(d):
                    ArrayData[i,:]=trace[400:700]
                stream = bowpy.util.array_util.array2stream(ArrayData, stream_org)

                dssa = bowpy.filter.fk.fk_reconstruct(stream, mu=5e-2, method='interpolate')

                stream_ssa = bowpy.util.array_util.array2stream(dssa, stream)

                bowpy.util.fkutil.plot(stream_ssa)

    Author: S. Schneider, 2016
    Reference:	Mostafa Naghizadeh, Seismic data interpolation and de-noising in the frequency-wavenumber
                domain, 2012, GEOPHYSICS
    """

    # Prepare data.
    st_tmp 		= st.copy()
    ArrayData	= stream2array(st_tmp, normalize=False)
    ADT 		= ArrayData.copy().transpose()

    fkData 		= np.fft.fft2(ArrayData)
    fkDT 		= np.fft.fft2(ADT)

    # Look for missing Traces
    recon_list 	= []

    for i, trace in enumerate(st_tmp):
        try:
            if trace.stats.zerotrace == 'True':
                recon_list.append(i)
        except AttributeError:
            if sum(trace.data) == 0. :
                recon_list.append(i)
        except:
            continue
    print(recon_list)

    # Calculate mask-function W.
    try:
        if peakinput.any():
            peaks = peakinput
    except:
        print("Calculating slope distribution...\n")
        M, prange, peaks = slope_distribution(fkData, slopes, deltaslope, peakpick=None, mindist=dist, smoothing=smoothpicks, interactive=slopepicking)
        if fulloutput:
            kin = 'n'
            while kin in ('n', 'N'):
                plt.figure()
                plt.title('Magnitude-Distribution')
                plt.xlabel('Slope in fk-domain')
                plt.ylabel('Magnitude of slope')
                plt.plot(prange, M)
                plt.plot(peaks[0], peaks[1]/peaks[1].max()*M.max(), 'ro')
                plt.show()
                kin = raw_input("Use picks? (y/n) \n")
                if kin in ['y' , 'Y']:
                    print("Using picks, continue \n")
                elif kin in ['n', 'N']:
                    print("Don't use picks, please re-pick \n")
                    M, prange, peaks = slope_distribution(fkData, slopes, deltaslope, peakpick=None, mindist=dist, smoothing=smoothpicks, interactive=True)

    print("Creating mask function with %i significant linear events \n" % len(peaks[0]) )
    W = makeMask(fkData, peaks[0], maskshape)

    # If fulloutput is desired, a bunch of messages and user interaction appears.
    if fulloutput:
        plt.figure()
        plt.subplot(3,1,1)
        plt.gca().yaxis.set_major_locator(plt.NullLocator())
        plt.gca().xaxis.set_major_locator(plt.NullLocator())
        plt.title("fk-spectrum")
        plt.imshow(abs(np.fft.fftshift(fkData)), aspect='auto', interpolation='none')
        plt.subplot(3,1,2)
        plt.gca().yaxis.set_major_locator(plt.NullLocator())
        plt.gca().xaxis.set_major_locator(plt.NullLocator())
        plt.title("Mask-function")
        plt.imshow(np.fft.fftshift(W), aspect='auto', interpolation='none')
        plt.subplot(3,1,3)
        plt.gca().yaxis.set_major_locator(plt.NullLocator())
        plt.gca().xaxis.set_major_locator(plt.NullLocator())
        plt.title("Applied mask-function")
        plt.imshow(abs(np.fft.fftshift(W*fkData)), aspect='auto', interpolation='none')
        plt.show()
        kin = raw_input("Use Mask? (y/n) \n")
        if kin in ['y' , 'Y']:
            print("Using Mask, continue \n")
        elif kin in ['n', 'N']:
            msg="Don't use Mask, exit"
            raise IOError(msg)

    # Checking for number of iteration and reconstruction behavior.
    maxiter=None
    interpol = False
    if isinstance(method, str):
        if method in ("denoise"):
                maxiter = 2
                recon_list = []
        elif method in ("interpolate"):
                maxiter = 10
                interpol = True

    elif isinstance(method, int):
        maxiter=method

    print("maximum %i" %maxiter)
    if solver in ("lsqr", "leastsquares", "ilsmr", "iterative", "cg", "fmin"):
        pocs = False
        # To keep the order it would be better to transpose W to WT
        # but for creation of Y, WT has to be transposed again,
        # so this step can be skipped.
        Y 	= W.reshape(1,W.size)[0]
        Yw 	= sparse.diags(Y)

        # Initialize arrays for cost-function.
        dv 	= ADT.transpose().reshape(1, ADT.size)[0]
        Dv	= fkDT.transpose().reshape(1, fkDT.size)[0]

        T = np.ones((ArrayData.shape[0], ArrayData.shape[1]))
        T[recon_list] = 0.
        T = T.reshape(1, T.size)[0]

        Ts = sparse.diags(T)


        # Create sparse-matrix with iFFT operations.
        print("Creating iFFT2 operator as a %ix%i matrix ...\n" %(fkDT.shape[0]*fkDT.shape[1], fkDT.shape[0]*fkDT.shape[1]))

        FH = create_iFFT2mtx(fkDT.shape[0], fkDT.shape[1])
        print("... finished\n")

        # Create model matrix A.
        print("Creating sparse %ix%i matrix A ...\n" %(FH.shape[0], FH.shape[1]))
        A =  Ts.dot(FH.dot(Yw))
        print("Starting reconstruction...\n")

        if solver in ("lsqr", "leastsquares"):
            print(" ...using iterative least-squares solver...\n")
            x = sparse.linalg.lsqr(A, dv, mu, atol=tol, btol=tol, conlim=tol, iter_lim=maxiter)
            print("istop = %i \n" % x[1])
            print("Used iterations = %i \n" % x[2])
            print("residual Norm ||x||_2 = %f \n " % x[8])
            print("Misfit ||Ax - b||_2= %f \n" % x[4])
            print("Condition number = %f \n" % x[6])

            Dv_rec = x[0]

        elif solver in ("ilsmr", "iterative"):
            print(" ...using iterative LSMR solver...\n")
            x = sparse.linalg.lsmr(A,dv,mu, atol=tol, btol=tol, conlim=tol, maxiter=maxiter)
            print("istop = %i \n" % x[1])
            print("Used iterations = %i \n" % x[2])
            print("Misfit = %f \n " % x[3])
            print("Modelnorm = %f \n" % x[4])
            print("Condition number = %f \n" % x[5])
            print("Norm of Dv = %f \n" % x[6])
            Dv_rec = x[0]

        elif solver in ("cg"):
            A 		= Ts.dot(FH.dot(Yw))
            Ah 		= A.conjugate().transpose()
            madj 	= Ah.dot(dv)
            E 		= mu * sparse.eye(A.shape[0])
            B 		= A + E
            Binv 	= sparse.linalg.inv(B)
            x 		= sparse.linalg.cg(Binv, madj, maxiter=maxiter)
            Dv_rec 	= x[0]

        elif solver in ('fmin'):
            A 		= Ts.dot(FH.dot(Yw))
            global arg1
            global arg2
            global arg3
            arg1 = dv
            arg2 = A
            arg3 = mu

            def J(x):
                COST = np.linalg.norm(arg1 - arg2.dot(x), 2)**2. + arg3*np.linalg.norm(x,2)**2.
                return COST

            Dv_rec = sp.optimize.fmin_cg(J, x0=Dv, maxiter=10)

        data_rec = np.fft.ifft2(Dv_rec.reshape(fkData.shape)).real

    elif solver in ("pocs"):
        pocs=True
        threshold = abs( (fkData*W.astype('complex').max()) )

        for i in range(maxiter):
            data_tmp 								= ArrayData.copy()
            fkdata 									= np.fft.fft2(data_tmp) * W.astype('complex')
            fkdata[ np.where(abs(fkdata) < threshold)] 	= 0. + 0j
            threshold = threshold * alpha
            #if i % 10 == 0.:
            #	plt.imshow(abs(fkdata), aspect='auto', interpolation='none')
            #	plt.savefig("%s.png" % i)
            data_tmp 								= np.fft.ifft2(fkdata).real.copy()
            ArrayData[recon_list] 					= data_tmp[recon_list]

        data_rec = ArrayData.copy()
    else:
        print("No solver or method specified.")
        return



    if interpol:
        st_rec = st.copy()
        for i in recon_list:
            st_rec[i].data = data_rec[i,:]
            st_rec[i].stats.zerotrace = 'reconstructed'


    else:
        st_rec = array2stream(data_rec, st)

    if fulloutput and not pocs:
        return st_rec, FH, dv, Dv, Dv_rec, Ts, Yw, W
    else:
        return st_rec
Пример #4
0
def pocs_recon(st, maxiter=None, alpha=None, dmethod='reconstruct', method='linear', beta=None, peaks=None, maskshape=None,
               dt=None, p=None, flow=None, fhigh=None, slidingwindow=False, alpha_i_test=False, st_org=None, plotfeedback=False):
    """
    This functions reconstructs missing signals in the f-k domain, using the original data,
    including gaps, filled with zeros. It applies the projection onto convex sets (pocs) algorithm in
    2D.

    Reference: 3D interpolation of irregular data with a POCS algorithm, Abma & Kabir, 2006

    :param st:
    :type  st:

    :param maxiter:
    :type  maxiter:

    :param nol: Number of loops
    :type  nol:

    returns:

    :param st_rec:
    :type  st_rec:
    """
    if not maxiter and not alpha and not alpha_i_test:
        raise IOError('One of maxiter, alpha or alpha_i_test has to be chosen')
    if alpha_i_test and not st_org:
        raise IOError('For alpha_i_test an orignal stream is needed')


    st_tmp 		= st.copy()
    ArrayData 	= stream2array(st_tmp, normalize=True)
    recon_list 	= []

    if dmethod in ('reconstruct'):
        for i, trace in enumerate(st_tmp):
            try:
                if trace.stats.zerotrace in ['True']:
                    recon_list.append(i)

            except AttributeError:
                if sum(trace.data) == 0. :
                    recon_list.append(i)

            except:
                continue

        noft = recon_list

    elif dmethod in ('denoise', 'de-noise'):
        noft = range(ArrayData.shape[0])

    if alpha_i_test:
        ADref = stream2array(st_org)

        if ADref.shape != ArrayData.shape:
            raise IOError('Shapes of reference stream and reconstructed stream differ!')

        alpha_range = np.linspace(50,99,11)/100.
        i_range		= np.flipud(np.arange(5,50))
        test_length = float(alpha_range.size * i_range.size)
        curr_step = 1.

        alpha = 0.
        maxiter = max(i_range)
        Qmax = 0.
        for i in i_range:
            for a in alpha_range:
                ADrec = pocs(ArrayData, i, noft, a, beta, method, dmethod, peaks, maskshape, dt, p, flow, fhigh, slidingwindow, plotfeedback=plotfeedback)
                Q = 10.*np.log( np.linalg.norm(ADref,2)**2. / np.linalg.norm(ADref - ADrec,2)**2. )

                if Q >= Qmax: # and maxiter > i:
                    alpha = a
                    maxiter = i
                    Qmax = Q

                progress = 100. * (curr_step / test_length)
                curr_step += 1.
                print ('Progress of alpha-i test: %i %%, current Q: %f, current Qmax: %f' % ( int(progress),Q ,Qmax ), end='\r')
                sys.stdout.flush()

        ADfinal = pocs(ArrayData, maxiter, noft, alpha, beta, method, dmethod, peaks, maskshape, dt, p, flow, fhigh, slidingwindow)

    else:
        ADfinal = pocs(ArrayData, maxiter, noft, alpha, beta, method, dmethod, peaks, maskshape, dt, p, flow, fhigh, slidingwindow, plotfeedback=plotfeedback)

    #datap = ADfinal.copy()

    st_rec 	= array2stream(ADfinal, st)
    st_rec.normalize()

    if alpha_i_test:
        for trace in st_rec:
            trace.stats.pocs =  {'alpha': alpha, 'iteration': maxiter, 'Q': Qmax}
    else:
        for trace in st_rec:
            trace.stats.pocs =  {'alpha': alpha, 'iteration': maxiter}
    for trace in noft:
        st_rec[trace].stats.recon = True

    return st_rec
Пример #5
0
def fk_filter(st, inv=None, event=None, ftype='eliminate',
              fshape=['butterworth', 2, 2], phase=None, polygon=4,
              normalize=True, stack=False, slopes=[-3, 3], deltaslope=0.05,
              slopepicking=False, smoothpicks=False, dist=0.5,
              maskshape=['boxcar', None], order=4., peakinput=False,
              eval_mean=1, fs=25):
    """
    Import stream, the function applies an 2D FFT, removes a certain window
    around the desired phase to surpress a slownessvalue corresponding to a
    wavenumber and applies an 2d iFFT. To fill the gap between uneven
    distributed stations use array_util.gaps_fill_zeros(). A method to
    interpolate the signals in the fk-domain is beeing build, also a method
    using a norm minimization method.

    param st: Stream
    type st: obspy.core.stream.Stream

    param inv: inventory
    type inv: obspy.station.inventory.Inventory

    param event: Event
    type event: obspy.core.event.Event

    param ftype: type of method, default is 'eliminate-polygon',
                 possible inputs are:
                 -eliminate
                 -extract
                 -eliminate-polygon
                 -extract-polygon
                 -mask
                 -fk

    type ftype: string

    param fshape: fshape[0] describes the shape of the fk-filter in case of
                  ftype is 'eliminate' or 'extract'. Possible inputs are:
                 -spike (default)
                 -boxcar
                 -taper
                 -butterworth

                  fshape[1] is an additional attribute to the shape of taper
                  and butterworth, for:
                 -taper: fshape[1] = slope of sides
                 -butterworth: fshape[1] = number of poles

                  fshape[3] describes the length of the filter shape,
                  respectivly wavenumber corner points around k=0,

                 e.g.: fshape['taper', 2, 4] produces a symmetric taper with
                 slope of side = 2, where the signal is reduced about
                 50% at k=+-2


    type  fshape: list

    param phase: name of the phase to be investigated
    type  phase: string

    param polygon: number of vertices of polygon for fk filter, only needed
                   if ftype is set to eliminate-polygon or extract-polygon.
                   Default is 12.
    type  polygon: int

    param normalize: normalize data to 1
    type normalize: bool

    param SSA: Force SSA algorithm or let it check, default:False
    type SSA: bool

    param eval_mean: number of linear events used to calculate the average of
                     the area in the fk domain.

    returns:	stream_filtered, the filtered stream.



    References: Yilmaz, Thomas

    Author: S. Schneider 2016

     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published
     by the Free Software Foundation, either version 3 of the License, or
     any later version.

     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     GNU General Public License for more details: http://www.gnu.org/licenses/
    """

    # Convert format and prepare Variables.

    # Check for Data type of variables.
    if not type(st) == Stream:
        print("Wrong input type of stream, must be obspy.core.stream.Stream")
        raise TypeError

    if len(fshape) == 1:
        fshape = [fshape[0], None, None]

    st_tmp = st.copy()
    ArrayData = stream2array(st_tmp, normalize)

    ix = ArrayData.shape[0]
    iK = int(math.pow(2, nextpow2(ix)))

    try:
        yinfo = epidist2nparray(attach_epidist2coords(inv, event, st_tmp))
        dx = (yinfo.max() - yinfo.min() + 1) / yinfo.size
        k_axis = np.fft.fftfreq(iK, dx)

    except:
        try:
            ymax = st_tmp[0].stats.distance
            ymin = st_tmp[0].stats.distance
            for trace in st_tmp:
                if trace.stats.distance > ymax:
                    ymax = trace.stats.distance
                if trace.stats.distance < ymin:
                    ymin = trace.stats.distance

            dx = (ymax - ymin + 1) / len(st_tmp)
            k_axis = np.fft.fftfreq(iK, dx)

        except:
            print("\nNo inventory or event-information found. \nContinue without specific distance and wavenumber information.")
            yinfo=None
            dx=None
            k_axis=None

    it     = ArrayData.shape[1]
    iF     = int(math.pow(2,nextpow2(it)))
    dt     = st_tmp[0].stats.delta
    f_axis = np.fft.fftfreq(iF,dt)



    # Calc mean diff of each epidist entry if it is reasonable
    # do a partial stack and apply filter.


    """
    2D Frequency-Space / Wavenumber-Frequency Filter #########################################################
    """

    # 2D f-k Transformation
    # Note array_fk has f on the x-axis and k on the y-axis!!!
    # For interaction the conj.-transposed Array is shown!!!


    # Decide when to use SSA to fill the gaps, calc mean distance of each epidist entry
    # if it differs too much --> SSA


    if ftype in ("eliminate"):
        if phase:
            if not isinstance(event, Event) and not isinstance(inv, Inventory):
                msg='For alignment on phase calculation inventory and event information is needed, not found.'
                raise IOError(msg)

            st_al = alignon(st_tmp, inv, event, phase)
            ArrayData = stream2array(st_al, normalize)
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            array_filtered_fk = line_set_zero(array_fk, shape=fshape)

        else:
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            array_filtered_fk = line_set_zero(array_fk, shape=fshape)

    elif ftype in ("extract"):
        if phase:
            if not isinstance(event, Event) and not isinstance(inv, Inventory):
                msg='For alignment on phase calculation inventory and event information is needed, not found.'
                raise IOError(msg)

            st_al = alignon(st_tmp, inv, event, phase)
            ArrayData = stream2array(st_al, normalize)
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            array_filtered_fk = line_cut(array_fk, shape=fshape)

        else:
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            array_filtered_fk = line_cut(array_fk, shape=fshape)


    elif ftype in ("eliminate-polygon"):
        array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
        if phase:
            if not isinstance(event, Event) and not isinstance(inv, Inventory):
                msg='For alignment on phase calculation inventory and event information is needed, not found.'
                raise IOError(msg)
            st_al = alignon(st_tmp, inv, event, phase)
            ArrayData = stream2array(st_al, normalize)
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            array_filtered_fk = _fk_eliminate_polygon(array_fk, polygon, ylabel=r'frequency domain f in Hz', \
                                                      yticks=f_axis, xlabel=r'wavenumber domain k in $\frac{1}{^{\circ}}$', xticks=k_axis, eval_mean=eval_mean, fs=fs)

        else:
            array_filtered_fk = _fk_eliminate_polygon(array_fk, polygon, ylabel=r'frequency domain f in Hz', \
                                                      yticks=f_axis, xlabel=r'wavenumber domain k in $\frac{1}{^{\circ}}$', xticks=k_axis, eval_mean=eval_mean, fs=fs)


    elif ftype in ("extract-polygon"):
        array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
        if phase:
            if not isinstance(event, Event) and not isinstance(inv, Inventory):
                msg='For alignment on phase calculation inventory and event information is needed, not found.'
                raise IOError(msg)

            st_al = alignon(st_tmp, inv, event, phase)
            ArrayData = stream2array(st_al, normalize)
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            array_filtered_fk = _fk_extract_polygon(array_fk, polygon, ylabel=r'frequency domain f in Hz', \
                                                yticks=f_axis, xlabel=r'wavenumber domain k in $\frac{1}{^{\circ}}$', xticks=k_axis, eval_mean=eval_mean, fs=fs)
        else:
            array_filtered_fk = _fk_extract_polygon(array_fk, polygon, ylabel=r'frequency domain f in Hz', \
                                                yticks=f_axis, xlabel=r'wavenumber domain k in $\frac{1}{^{\circ}}$', xticks=k_axis, eval_mean=eval_mean, fs=fs)


    elif ftype in ("mask"):
        array_fk = np.fft.fft2(ArrayData)
        M, prange, peaks = slope_distribution(array_fk, slopes, deltaslope, peakpick=None, mindist=dist, smoothing=smoothpicks, interactive=slopepicking)
        W = makeMask(array_fk, peaks[0], maskshape)
        array_filtered_fk =  array_fk * W
        array_filtered = np.fft.ifft2(array_filtered_fk)
        stream_filtered = array2stream(array_filtered, st_original=st.copy())
        return stream_filtered, array_fk, W


    elif ftype in ("fk"):
        if phase:
            if not isinstance(event, Event) and not isinstance(inv, Inventory):
                msg='For alignment on phase calculation inventory and event information is needed, not found.'
                raise IOError(msg)

            st_al = alignon(st_tmp, inv, event, phase)
            ArrayData = stream2array(st_al, normalize)
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            ### BUILD DOUBLE TAPER ###
            #array_filtered_fk =

        else:
            array_fk = np.fft.fft2(ArrayData, s=(iK,iF))
            ### BUILD DOUBLE TAPER ###
            #array_filtered_fk =


    else:
        print("No type of filter specified")
        raise TypeError

    array_filtered = np.fft.ifft2(array_filtered_fk, s=(iK,iF)).real


    # Convert to Stream object.
    array_filtered = array_filtered[0:ix, 0:it]
    stream_filtered = array2stream(array_filtered, st_original=st.copy())
    stream_filtered.normalize()

    return stream_filtered