Пример #1
0
 def test_preprocess_data_scaling_std(self):
     """Test that the input features have been correctly scaled to 0.5 standard deviation."""
     model = BPLModel(TEST_DATA, X=TEST_FEATS)
     stan_data = model._pre_process_data()
     self.assertTrue(
         np.allclose(stan_data["X"].std(axis=0),
                     0.5 * np.ones(stan_data["X"].shape[1])))
Пример #2
0
 def test_preprocess_data_scaling_mean(self):
     """Test that the input features have been correctly scaled to zero mean."""
     model = BPLModel(TEST_DATA, X=TEST_FEATS)
     stan_data = model._pre_process_data()
     self.assertTrue(
         np.allclose(stan_data["X"].mean(axis=0), np.zeros(stan_data["X"].shape[1]))
     )
Пример #3
0
 def test_preprocess_data_nofeats(self):
     """Test that stan data dictionary has the correct keys when no features are passed."""
     model = BPLModel(TEST_DATA, X=None)
     stan_data = model._pre_process_data()
     self.assertTrue(
         set(stan_data.keys())
         == {"nteam", "nmatch", "home_team", "away_team", "home_goals", "away_goals"}
     )
Пример #4
0
 def test_preprocess_data_date(self):
     """Test that the correct date constraint is applied in preprocessing."""
     model = BPLModel(TEST_DATA, X=TEST_FEATS)
     stan_data = model._pre_process_data(max_date="2018-03-01")
     df = TEST_DATA.copy()
     df.loc[:, "date"] = pd.to_datetime(df["date"])
     df = df[df["date"] <= "2018-03-01"]
     n = len(df)
     self.assertEqual(stan_data["nmatch"], n)
Пример #5
0
 def test_fit_nofeats_summary(self):
     """Test that the summary is returned as a pandas dataframe when asked for."""
     model = BPLModel(TEST_DATA)
     summary = model.fit(return_summary=True, iter=100, seed=42)
     self.assertIsInstance(summary, pd.DataFrame)
Пример #6
0
 def test_fit_feats_run(self):
     """Test that the fit method runs when we pass features."""
     model = BPLModel(TEST_DATA, X=TEST_FEATS)
     model.fit(iter=100, seed=42)
Пример #7
0
 def test_fit_nofeats_run(self):
     """Test that the fit method runs."""
     model = BPLModel(TEST_DATA)
     model.fit(iter=100, seed=42)
Пример #8
0
 def test_preprocess_data_baddate(self):
     """Test that the correct error is raised if max_date is too low."""
     model = BPLModel(TEST_DATA, X=TEST_FEATS)
     self.assertRaises(ValueError, model._pre_process_data, max_date="1966-07-30")
Пример #9
0
    def test_add_new_team(self):
        """Test functionality for adding new teams"""
        model = BPLModel(data=TEST_DATA)
        model_X = BPLModel(data=TEST_DATA, X=TEST_FEATS)
        model.fit(iter=100)
        model_X.fit(iter=100)

        # check correct exception raised if unseen team is passed
        self.assertRaises(
            UnseenTeamError, model.overall_probabilities, "blah", "Man City"
        )
        self.assertRaises(
            UnseenTeamError, model.overall_probabilities, "Man City", "blah"
        )
        self.assertRaises(
            UnseenTeamError, model.overall_probabilities, "blah1", "blah2"
        )

        # add a new team and check shapes
        model.add_new_team("blah1")
        self.assertIn("blah1", model.team_indices.keys())
        self.assertEqual(model.a.shape[1], 21)
        self.assertEqual(model.b.shape[1], 21)
        self.assertEqual(model.gamma.shape[1], 21)

        # two new teams added with no extra prior information should be identical
        model.add_new_team("blah2")
        self.assertTupleEqual(
            model.overall_probabilities("blah1", "blah2"),
            model.overall_probabilities("blah2", "blah1"),
        )

        # if team already known is added, exception should be raised
        self.assertRaises(ValueError, model.add_new_team, "Man City")

        # test adding a new team to model with / without covariates
        model_X.add_new_team("blah1")
        model_X.add_new_team("blah2", X=np.array([70.0, 70.0, 70.0]))
Пример #10
0
import os

from unittest import TestCase

from bpl.models import BPLModel
from bpl.util import (
    ModelNotConvergedWarning,
    ModelNotFitError,
    UnseenTeamError,
    check_fit,
)

TEST_DATA = pd.read_csv(os.path.join(os.path.dirname(__file__), "test_data.csv"))
TEST_FEATS = pd.read_csv(os.path.join(os.path.dirname(__file__), "test_feats.csv"))
FITTED_MODEL = BPLModel(TEST_DATA)
FITTED_MODEL.fit(iter=1000, seed=42)


class TestBPLModel(TestCase):
    def test_preprocess_data_nofeats(self):
        """Test that stan data dictionary has the correct keys when no features are passed."""
        model = BPLModel(TEST_DATA, X=None)
        stan_data = model._pre_process_data()
        self.assertTrue(
            set(stan_data.keys())
            == {"nteam", "nmatch", "home_team", "away_team", "home_goals", "away_goals"}
        )

    def test_preprocess_data_feats(self):
        """Test that the stan data dictionary has the correct keys when features are passed."""