def createDataset(colStr, colName, matchValue): if 'df' in Brain.object_map(brain): df = brain['df'] d = df.filter(regex=colStr).dropna(how='all').head(1000) if colName and matchValue: d = d[d[colName] == int(matchValue)] return d else: return pd.DataFrame()
import pickle import os import time # utilities def show(t, task, method, code_string, n): print(' || '.join([ str(x) for x in [round((time.time() - t) * 1000, 4), task, method, n, code_string] ])) s = '--------' mem, pic, bra = ('in-memory', 'pickle', 'brain-plasma') brain = Brain() # need at least 2GB track = pd.DataFrame(columns=['task', 'method', 'time', 'round', 'code']) i = 0 print(s, '\nSaving large objects - 10,000,000x10 DataFrame of integers', s) task = 'save large' method = mem code = 'x = 5' for n in [1, 2, 3]: start = time.time() x = 5 show(start, task, method, code, n) track.loc[i] = [ task, method, round((time.time() - start) * 1000, 4), n, code
from brain_plasma import Brain import json import pandas as pd import numpy as np import os # create a Brain with a store running print('starting plasma_state') # start the plasma_store at path = '/tmp/brain_plasma_test' brain = Brain(path=path) # create python objects a = dict(this=[1,2,3,4],that=[2,3,4,5]) b = 'this is a string' c = b'this is a byte string' d = ['this','is','a','list'] e = json.dumps(a) f = set([1,2,3,4,5]) g = None h = (3,4,5) def i(name): print(name) j = 5 k = str for thing,name in zip([a,b,c,d,e,f,g,h,i,j,k],[i for i in 'abcdefghijk']): brain.learn(name,thing) # read python object assert a==brain.recall('a')
from app import app import dash_core_components as dcc import dash_html_components as html import dash_table from dash.dependencies import Input, Output, State import pandas as pd from brain_plasma import Brain import plotly.express as px import dash_bootstrap_components as dbc import plotly.graph_objects as go brain = Brain() def get_country_df_cases(country): df = brain['df_covid_cases'].tail(1).T if not country: return df else: return df.filter(country, axis=0) def get_data_cases(country): df = brain['df_covid_cases'] return df[country] def get_data_frame_cases(): df = brain['df_covid_cases'] return df
def brain(): """Brain with mocked plasma_store client""" return Brain(ClientClass=MockPlasmaClient)
def test_init_other(): test = Brain(namespace="nondefault", ClientClass=MockPlasmaClient) assert test.namespace == "nondefault"
import time import uuid from brain_plasma.v02compatibility import Brain as v02Brain from brain_plasma import Brain brain = v02Brain(path="/tmp/brain") hbrain = Brain(path="/tmp/hash-brain") few = 10 many = 100 times = {few: {"old":{},'hash':{}}, many: {"old":{},'hash':{}}} ################################################################# # few things ################################################################# # make a few things ids = [uuid.uuid1().hex for x in range(few)] start = time.time() sets = [brain.learn(ID, ID) for ID in ids] times[few]['old']['learn'] = time.time()-start start = time.time() hsets = [hbrain.learn(ID, ID) for ID in ids] times[few]['hash']['learn'] = time.time()-start # test speed with a few things start = time.time() outs = [brain[ID] for ID in ids] times[few]["old"]['recall'] = time.time() - start start = time.time()