Пример #1
0
 def test_ismember2d(self):
     b = np.reshape([0, 0, 0, 1, 1, 1], [3, 2])
     locb = np.array([0, 1, 0, 2, 2, 1])
     lia = np.array([True, True, True, True, True, True, False, False])
     a = np.r_[b[locb, :], np.array([[2, 1], [1, 2]])]
     lia_, locb_ = bnum.ismember2d(a, b)
     assert np.all(lia == lia_) & np.all(locb == locb_)
Пример #2
0
    def test_uuids_intersections(self):
        ntotal = 500
        nsub = 17
        nadd = 3

        eids = uuid2np([uuid.uuid4() for _ in range(ntotal)])

        np.random.seed(42)
        isel = np.floor(np.argsort(np.random.random(nsub)) / nsub *
                        ntotal).astype(np.int16)
        sids = np.r_[eids[isel, :],
                     uuid2np([uuid.uuid4() for _ in range(nadd)])]
        np.random.shuffle(sids)

        # check the intersection
        v, i0, i1 = intersect2d(eids, sids)
        assert np.all(eids[i0, :] == sids[i1, :])
        assert np.all(np.sort(isel) == np.sort(i0))

        v_, i0_, i1_ = np.intersect1d(eids[:, 0],
                                      sids[:, 0],
                                      return_indices=True)
        assert np.setxor1d(v_, v[:, 0]).size == 0
        assert np.setxor1d(i0, i0_).size == 0
        assert np.setxor1d(i1, i1_).size == 0

        for a, b in zip(ismember2d(sids, eids),
                        ismember(sids[:, 0], eids[:, 0])):
            assert np.all(a == b)

        # check conversion to numpy back and forth
        uuids = [uuid.uuid4() for _ in np.arange(4)]
        np_uuids = uuid2np(uuids)
        assert np2uuid(np_uuids) == uuids
Пример #3
0
 def test_ismember2d_uuids(self):
     nb = 20
     na = 500
     np.random.seed(42)
     a = np.random.randint(0, nb + 3, na)
     b = np.arange(nb)
     lia, locb = bnum.ismember(a, b)
     bb = np.random.randint(low=np.iinfo(np.int64).min,
                            high=np.iinfo(np.int64).max,
                            size=(nb, 2),
                            dtype=np.int64)
     aa = np.zeros((na, 2), dtype=np.int64)
     aa[lia, :] = bb[locb, :]
     lia_, locb_ = bnum.ismember2d(aa, bb)
     assert np.all(lia == lia_) & np.all(locb == locb_)
     bb[:, 0] = 0
     aa[:, 0] = 0
     # if the first column is equal, the distinction is to be made on the second\
     assert np.unique(bb[:, 1]).size == nb
     lia_, locb_ = bnum.ismember2d(aa, bb)
     assert np.all(lia == lia_) & np.all(locb == locb_)
Пример #4
0
 def _update_cache(self, ses, dataset_types):
     """
     :param ses: session details dictionary as per Alyx response
     :param dataset_types:
     :return: is_updated (bool): if the cache was updated or not
     """
     save = False
     pqt_dsets = _ses2pandas(ses, dtypes=dataset_types)
     # if the dataframe is empty, return
     if pqt_dsets.size == 0:
         return
     # if the cache is empty create the cache variable
     elif self._cache.size == 0:
         self._cache = pqt_dsets
         save = True
     # the cache is not empty and there are datasets in the query
     else:
         isin, icache = ismember2d(pqt_dsets[['id_0', 'id_1']].to_numpy(),
                                   self._cache[['id_0', 'id_1']].to_numpy())
         # check if the hash / filesize fields have changed on patching
         heq = (self._cache['hash'].iloc[icache].to_numpy() ==
                pqt_dsets['hash'].iloc[isin].to_numpy())
         feq = np.isclose(self._cache['file_size'].iloc[icache].to_numpy(),
                          pqt_dsets['file_size'].iloc[isin].to_numpy(),
                          rtol=0,
                          atol=0,
                          equal_nan=True)
         eq = np.logical_and(heq, feq)
         # update new hash / filesizes
         if not np.all(eq):
             self._cache.iloc[icache,
                              4:6] = pqt_dsets.iloc[np.where(isin)[0],
                                                    4:6].to_numpy()
             save = True
         # append datasets that haven't been found
         if not np.all(isin):
             self._cache = self._cache.append(
                 pqt_dsets.iloc[np.where(~isin)[0]])
             self._cache = self._cache.reindex()
             save = True
     if save:
         # before saving makes sure pandas did not cast uuids in float
         typs = [
             t for t, k in zip(self._cache.dtypes, self._cache.keys())
             if 'id_' in k
         ]
         assert (all(map(lambda t: t == np.int64, typs)))
         # if this gets too big, look into saving only when destroying the ONE object
         parquet.save(self._cache_file, self._cache)
Пример #5
0
    def test_rf_map(self):
        """

        """
        # Simulate fake rfmap data
        test_frames = np.full((60, 15, 15), 128, dtype='uint8')
        # Test on and off individually
        test_frames[10:20, 8, 8] = 0
        test_frames[25:35, 10, 13] = 255
        # Test that interleaved are detected correctly
        test_frames[40:50, 4, 9] = 0
        test_frames[42:52, 6, 10] = 255
        test_frames[42:55, 11, 4] = 0
        test_frames[50:60, 8, 8] = 0

        test_times = np.arange(60)
        rf_map = {}
        rf_map['times'] = test_times
        rf_map['frames'] = test_frames

        rf_map_times, rf_map_pos, rf_stim_frames = passive.get_on_off_times_and_positions(
            rf_map)

        assert (all(rf_map_times == test_times))
        assert (rf_map_pos.shape == (15 * 15, 2))
        assert (len(rf_stim_frames['on']) == 15 * 15)
        assert (len(rf_stim_frames['off']) == 15 * 15)

        # Off is for the 0 ones
        assert (all(rf_stim_frames['off'][ismember2d(
            rf_map_pos, np.array([[8, 8]]))[0]][0][0] == [10, 50]))
        assert (rf_stim_frames['off'][ismember2d(rf_map_pos,
                                                 np.array([[4, 9]
                                                           ]))[0]][0][0] == 40)
        assert (rf_stim_frames['off'][ismember2d(rf_map_pos,
                                                 np.array([[11, 4]
                                                           ]))[0]][0][0] == 42)

        # On is for the 255 ones
        assert (rf_stim_frames['on'][ismember2d(rf_map_pos,
                                                np.array([[10, 13]
                                                          ]))[0]][0][0] == 25)
        assert (rf_stim_frames['on'][ismember2d(rf_map_pos,
                                                np.array([[6, 10]
                                                          ]))[0]][0][0] == 42)

        # Next test that the firing rate function works
        # Basically just make one square responsive
        spike_times = np.arange(25, 35, 0.01)
        spike_depths = 500 * np.ones_like(spike_times)

        rf_map_avg, depths = passive.get_rf_map_over_depth(rf_map_times,
                                                           rf_map_pos,
                                                           rf_stim_frames,
                                                           spike_times,
                                                           spike_depths,
                                                           x_lim=[0, 60])
        non_zero = np.where(rf_map_avg['on'] != 0)
        assert (np.argmin(np.abs(depths - 500)) == non_zero[0][0])
        assert (all(non_zero[1] == 10))
        assert (all(non_zero[2] == 13))

        assert (np.all(rf_map_avg['off'] == 0))

        rf_svd = passive.get_svd_map(rf_map_avg)
        # Make sure that the one responsive element is non-zero
        assert (rf_svd['on'][non_zero[0][0]][non_zero[1][0], non_zero[2][0]] !=
                0)
        # But that all the rest are zero
        rf_svd['on'][non_zero[0][0]][non_zero[1][0], non_zero[2][0]] = 0
        assert (np.all(np.isclose(np.vstack(rf_svd['on']), 0)))
        assert (np.all(np.vstack(rf_svd['off']) == 0))