Пример #1
0
def test_save_concat_windows_dataset(setup_concat_windows_dataset, tmpdir):
    concat_windows_dataset = setup_concat_windows_dataset
    n_windows_datasets = len(concat_windows_dataset.datasets)
    save_concat_dataset(path=tmpdir,
                        concat_dataset=concat_windows_dataset,
                        overwrite=False)
    assert os.path.exists(tmpdir.join(f"description.json"))
    for windows_i in range(n_windows_datasets):
        assert os.path.exists(tmpdir.join(f"{windows_i}-epo.fif"))
    assert not os.path.exists(tmpdir.join(f"{n_windows_datasets}-epo.fif"))
Пример #2
0
def test_load_multiple_concat_raw_dataset(setup_concat_raw_dataset, tmpdir):
    concat_raw_dataset = setup_concat_raw_dataset
    for i in range(2):
        path = os.path.join(tmpdir, str(i))
        os.makedirs(path)
        save_concat_dataset(path=path,
                            concat_dataset=concat_raw_dataset,
                            overwrite=False)
    loaded_concat_raw_datasets = load_concat_dataset(path=tmpdir,
                                                     preload=False)
    assert 2 * len(concat_raw_dataset) == len(loaded_concat_raw_datasets)
    assert (2 * len(concat_raw_dataset.datasets) == len(
        loaded_concat_raw_datasets.datasets))
    assert (2 * len(concat_raw_dataset.description) == len(
        loaded_concat_raw_datasets.description))
Пример #3
0
def test_load_concat_raw_dataset(setup_concat_raw_dataset, tmpdir):
    concat_raw_dataset = setup_concat_raw_dataset
    n_raw_datasets = len(concat_raw_dataset.datasets)
    save_concat_dataset(path=tmpdir,
                        concat_dataset=concat_raw_dataset,
                        overwrite=False)
    loaded_concat_raw_dataset = load_concat_dataset(path=tmpdir, preload=False)
    assert len(concat_raw_dataset) == len(loaded_concat_raw_dataset)
    assert (len(concat_raw_dataset.datasets) == len(
        loaded_concat_raw_dataset.datasets))
    assert (len(concat_raw_dataset.description) == len(
        loaded_concat_raw_dataset.description))
    for raw_i in range(n_raw_datasets):
        actual_x, actual_y = concat_raw_dataset[raw_i]
        x, y = loaded_concat_raw_dataset[raw_i]
        np.testing.assert_allclose(x, actual_x, rtol=1e-4, atol=1e-5)
    pd.testing.assert_frame_equal(concat_raw_dataset.description,
                                  loaded_concat_raw_dataset.description)
Пример #4
0
def test_load_concat_windows_dataset(setup_concat_windows_dataset, tmpdir):
    concat_windows_dataset = setup_concat_windows_dataset
    n_windows_datasets = len(concat_windows_dataset.datasets)
    save_concat_dataset(path=tmpdir,
                        concat_dataset=concat_windows_dataset,
                        overwrite=False)
    loaded_concat_windows_dataset = load_concat_dataset(path=tmpdir,
                                                        preload=False)
    assert len(concat_windows_dataset) == len(loaded_concat_windows_dataset)
    assert (len(concat_windows_dataset.datasets) == len(
        loaded_concat_windows_dataset.datasets))
    assert (len(concat_windows_dataset.description) == len(
        loaded_concat_windows_dataset.description))
    for windows_i in range(n_windows_datasets):
        actual_x, actual_y, actual_crop_inds = concat_windows_dataset[
            windows_i]
        x, y, crop_inds = loaded_concat_windows_dataset[windows_i]
        np.testing.assert_allclose(x, actual_x, rtol=1e-4, atol=1e-5)
        np.testing.assert_allclose(y, actual_y, rtol=1e-4, atol=1e-5)
        np.testing.assert_array_equal(crop_inds, actual_crop_inds)
    pd.testing.assert_frame_equal(concat_windows_dataset.description,
                                  loaded_concat_windows_dataset.description)
Пример #5
0
            start_offset_samples=0,
            stop_offset_samples=None,
            window_size_samples=window_size_samples,
            window_stride_samples=window_stride_samples,
            drop_last_window=False)
        # save memory by deleting raw recording
        del tuh_subset
        # store the number of windows required for loading later on
        tuh_windows.description["n_windows"] = [
            len(d) for d in tuh_windows.datasets
        ]

        # create one directory for every recording
        rec_path = os.path.join(OUT_PATH, str(rec_i))
        if not os.path.exists(rec_path):
            os.makedirs(rec_path)
        save_concat_dataset(rec_path, tuh_windows)
        out_i += 1
        # save memory by catching epoched recording
        del tuh_windows
    else:
        # store raws to disk for option of using different compute window
        # sizes
        pass

###############################################################################
# We load the preprocessed data again in a lazy fashion (`preload=False`). It is
# now ready to be used for model training.

tuh_loaded = load_concat_dataset('./tuh_sample/', preload=False)