Пример #1
0
def create_model_lstm(n_classes, input_time_length, in_chans=22):

    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    # final_conv_length determines the size of the receptive field of the ConvNet

    lstm_size = 30
    lstm_layers = 1

    print("#### LSTM SIZE {} ####".format(lstm_size))
    print("#### LSTM LAYERS {} ####".format(lstm_layers))

    model = ShallowFBCSPLSTM(in_chans=in_chans,
                             n_classes=n_classes,
                             input_time_length=input_time_length,
                             lstm_size=lstm_size,
                             lstm_layers=lstm_layers,
                             n_filters_time=lstm_size,
                             n_filters_spat=lstm_size,
                             final_conv_length=4,
                             pool_time_length=20,
                             pool_time_stride=5).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    return model
Пример #2
0
def preprocessing(data_folder, subject_id, low_cut_hz):
    global train_set, test_set, valid_set, n_classes, n_chans
    global n_iters, input_time_length
# def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()
    train_cnt = train_cnt.drop_channels(['STI 014', 'EOG-left',
                                         'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a, low_cut_hz, 38, train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T, factor_new=1e-3,
                                                  init_block_size=1000,
                                                  eps=1e-4).T,
        train_cnt)

    test_cnt = test_cnt.drop_channels(['STI 014', 'EOG-left',
                                       'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a, low_cut_hz, 38, test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T, factor_new=1e-3,
                                                  init_block_size=1000,
                                                  eps=1e-4).T,
        test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), ('Right Hand', [2],),
                              ('Foot', [3]), ('Tongue', [4])])
    ival = [-500, 4000]
    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)
    set_random_seeds(seed=20190706, cuda=cuda)
    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length=1000
Пример #3
0
 def setup_training(self):
     """
     Setup training, i.e. set random seeds, transform model to cuda,
     initialize monitoring.
     """
     # reset remember best extension in case you rerun some experiment
     self.rememberer = RememberBest(self.remember_best_column)
     self.epochs_df = pd.DataFrame()
     set_random_seeds(seed=2382938, cuda=self.cuda)
     if self.cuda:
         assert th.cuda.is_available(), "Cuda not available"
         self.model.cuda()
Пример #4
0
 def setup_training(self):
     """
     Setup training, i.e. set random seeds, transform model to cuda,
     initialize monitoring.
     """
     # reset remember best extension in case you rerun some experiment
     if self.do_early_stop:
         self.rememberer = RememberBest(self.remember_best_column)
     if self.loggers == ('print', ):
         self.loggers = [Printer()]
     self.epochs_df = pd.DataFrame()
     set_random_seeds(seed=self.seed, cuda=self.cuda)
     if self.cuda:
         assert th.cuda.is_available(), "Cuda not available"
         self.model.cuda()
Пример #5
0
def network_model(model, train_set, test_set, valid_set, n_chans, input_time_length, cuda):
	
	max_epochs = 30 
	max_increase_epochs = 10 
	batch_size = 64 
	init_block_size = 1000

	set_random_seeds(seed=20190629, cuda=cuda)

	n_classes = 2 
	n_chans = n_chans
	input_time_length = input_time_length

	if model == 'deep':
		model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length,
						 final_conv_length='auto').create_network()

	elif model == 'shallow':
		model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length,
								final_conv_length='auto').create_network()

	if cuda:
		model.cuda()

	log.info("%s model: ".format(str(model))) 

	optimizer = AdamW(model.parameters(), lr=0.00625, weight_decay=0)

	iterator = BalancedBatchSizeIterator(batch_size=batch_size) 

	stop_criterion = Or([MaxEpochs(max_epochs),
						 NoDecrease('valid_misclass', max_increase_epochs)])

	monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

	model_constraint = None
	print(train_set.X.shape[0]) 

	model_test = Experiment(model, train_set, valid_set, test_set, iterator=iterator,
							loss_function=F.nll_loss, optimizer=optimizer,
							model_constraint=model_constraint, monitors=monitors,
							stop_criterion=stop_criterion, remember_best_column='valid_misclass',
							run_after_early_stop=True, cuda=cuda)

	model_test.run()
	return model_test 
Пример #6
0
def create_model(n_classes, input_time_length, in_chans=22):

    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=4,
                            pool_time_length=20,
                            pool_time_stride=5).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    return model
 def __init__(self, 
             n_filters_time=10,
             filter_time_length=75,
             n_filters_spat=5,
             pool_time_length=60,
             pool_time_stride=30,
             nb_epoch=160):
                 
     # random generator
     self.rng = RandomState(None)
     # init meta info
     self.cuda = torch.cuda.is_available()
     set_random_seeds(seed=randint(1,20180505), cuda=self.cuda) 
     
     # copy all network parameters
     self.n_filters_time=n_filters_time
     self.filter_time_length=filter_time_length
     self.n_filters_spat=n_filters_spat
     self.pool_time_length=pool_time_length
     self.pool_time_stride=pool_time_stride
     self.nb_epoch = nb_epoch
     
     return 
    def __init__(self,
                 n_filters_time=10,
                 filter_time_length=75,
                 n_filters_spat=5,
                 pool_time_length=60,
                 pool_time_stride=30,
                 nb_epoch=160):

        # init meta info
        self.cuda = torch.cuda.is_available()
        #set_random_seeds(seed=20180505, cuda=self.cuda)  # TODO: Fix random seed
        set_random_seeds(seed=randint(1, 20180505),
                         cuda=self.cuda)  # TODO: Fix random seed

        # copy all network parameters
        self.n_filters_time = n_filters_time
        self.filter_time_length = filter_time_length
        self.n_filters_spat = n_filters_spat
        self.pool_time_length = pool_time_length
        self.pool_time_stride = pool_time_stride
        self.nb_epoch = nb_epoch

        return
Пример #9
0
def build_exp(model_name, cuda, data, batch_size, max_epochs, max_increase_epochs):

    log.info("==============================")
    log.info("Loading Data...")
    log.info("==============================")

    train_set = data.train_set
    valid_set = data.validation_set
    test_set = data.test_set

    log.info("==============================")
    log.info("Setting Up Model...")
    log.info("==============================")
    set_random_seeds(seed=20190706, cuda=cuda)
    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model_name == "shallow":
        model = NewShallowNet(
            n_chans, n_classes, input_time_length, final_conv_length="auto"
        )
        # model = ShallowFBCSPNet(
        #     n_chans,
        #     n_classes,
        #     input_time_length=input_time_length,
        #     final_conv_length="auto",
        # ).create_network()
    elif model_name == "deep":
        model = NewDeep4Net(n_chans, n_classes, input_time_length, "auto")
        # model = Deep4Net(
        #     n_chans,
        #     n_classes,
        #     input_time_length=input_time_length,
        #     final_conv_length="auto",
        # ).create_network()
    elif model_name == "eegnet":
        # model = EEGNet(n_chans, n_classes,
        #                input_time_length=input_time_length)
        # model = EEGNetv4(n_chans, n_classes,
        #                  input_time_length=input_time_length).create_network()
        model = NewEEGNet(n_chans, n_classes, input_time_length=input_time_length)

    if cuda:
        model.cuda()

    log.info("==============================")
    log.info("Logging Model Architecture:")
    log.info("==============================")
    log.info("Model: \n{:s}".format(str(model)))

    log.info("==============================")
    log.info("Building Experiment:")
    log.info("==============================")
    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or(
        [MaxEpochs(max_epochs), NoDecrease("valid_misclass", max_increase_epochs)]
    )

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(
        model,
        train_set,
        valid_set,
        test_set,
        iterator=iterator,
        loss_function=F.nll_loss,
        optimizer=optimizer,
        model_constraint=model_constraint,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_column="valid_misclass",
        run_after_early_stop=True,
        cuda=cuda,
    )
    return exp
def test_cropped_decoding():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [mne.io.read_raw_edf(path, preload=True, stim_channel='auto',
                                 verbose='WARNING')
             for path in physionet_paths]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1,
                         proj=False, picks=eeg_channel_inds,
                         baseline=None, preload=True)
    import numpy as np
    from braindecode.datautil.signal_target import SignalAndTarget
    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])
    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds
    from braindecode.models.util import to_dense_prediction_model

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    input_time_length = 450
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=12).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())
    from braindecode.torch_ext.util import np_to_var
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    print("{:d} predictions per input/trial".format(n_preds_per_input))
    from braindecode.datautil.iterators import CropsFromTrialsIterator
    iterator = CropsFromTrialsIterator(batch_size=32,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    from braindecode.torch_ext.util import np_to_var, var_to_np
    import torch.nn.functional as F
    from numpy.random import RandomState
    import torch as th
    from braindecode.experiments.monitors import compute_preds_per_trial_from_crops
    rng = RandomState((2017, 6, 30))
    losses = []
    accuracies = []
    for i_epoch in range(4):
        # Set model to training mode
        model.train()
        for batch_X, batch_y in iterator.get_batches(train_set, shuffle=False):
            net_in = np_to_var(batch_X)
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(batch_y)
            if cuda:
                net_target = net_target.cuda()
            # Remove gradients of last backward pass from all parameters
            optimizer.zero_grad()
            outputs = model(net_in)
            # Mean predictions across trial
            # Note that this will give identical gradients to computing
            # a per-prediction loss (at least for the combination of log softmax activation
            # and negative log likelihood loss which we are using here)
            outputs = th.mean(outputs, dim=2, keepdim=False)
            loss = F.nll_loss(outputs, net_target)
            loss.backward()
            optimizer.step()

        # Print some statistics each epoch
        model.eval()
        print("Epoch {:d}".format(i_epoch))
        for setname, dataset in (('Train', train_set), ('Test', test_set)):
            # Collect all predictions and losses
            all_preds = []
            all_losses = []
            batch_sizes = []
            for batch_X, batch_y in iterator.get_batches(dataset,
                                                         shuffle=False):
                net_in = np_to_var(batch_X)
                if cuda:
                    net_in = net_in.cuda()
                net_target = np_to_var(batch_y)
                if cuda:
                    net_target = net_target.cuda()
                outputs = model(net_in)
                all_preds.append(var_to_np(outputs))
                outputs = th.mean(outputs, dim=2, keepdim=False)
                loss = F.nll_loss(outputs, net_target)
                loss = float(var_to_np(loss))
                all_losses.append(loss)
                batch_sizes.append(len(batch_X))
            # Compute mean per-input loss
            loss = np.mean(np.array(all_losses) * np.array(batch_sizes) /
                           np.mean(batch_sizes))
            print("{:6s} Loss: {:.5f}".format(setname, loss))
            losses.append(loss)
            # Assign the predictions to the trials
            preds_per_trial = compute_preds_per_trial_from_crops(all_preds,
                                                              input_time_length,
                                                              dataset.X)
            # preds per trial are now trials x classes x timesteps/predictions
            # Now mean across timesteps for each trial to get per-trial predictions
            meaned_preds_per_trial = np.array(
                [np.mean(p, axis=1) for p in preds_per_trial])
            predicted_labels = np.argmax(meaned_preds_per_trial, axis=1)
            accuracy = np.mean(predicted_labels == dataset.y)
            accuracies.append(accuracy * 100)
            print("{:6s} Accuracy: {:.1f}%".format(
                setname, accuracy * 100))
    np.testing.assert_allclose(
        np.array(losses),
        np.array([1.703004002571106,
                  1.6295261979103088,
                  0.71168938279151917,
                  0.70825588703155518,
                  0.58231228590011597,
                  0.60176041722297668,
                  0.46629951894283295,
                  0.51184913516044617]),
        rtol=1e-4, atol=1e-5)
    np.testing.assert_allclose(
        np.array(accuracies),
        np.array(
            [50.0,
             46.666666666666664,
             60.0,
             53.333333333333336,
             68.333333333333329,
             66.666666666666657,
             88.333333333333329,
             83.333333333333343]),
        rtol=1e-4, atol=1e-5)
Пример #11
0
def run_exp(epoches, batch_size, subject_num, model_type, cuda, single_subject,
            single_subject_num):
    # ival = [-500, 4000]
    max_increase_epochs = 160

    # Preprocessing
    X, y = loadSubjects(subject_num, single_subject, single_subject_num)
    X = X.astype(np.float32)
    y = y.astype(np.int64)
    X, y = shuffle(X, y)

    trial_length = X.shape[2]
    print("trial_length " + str(trial_length))
    print("trying to run with {} sec trials ".format((trial_length - 1) / 256))
    print("y")
    print(y)
    trainingSampleSize = int(len(X) * 0.6)
    valudationSampleSize = int(len(X) * 0.2)
    testSampleSize = int(len(X) * 0.2)
    print("INFO : Training sample size: {}".format(trainingSampleSize))
    print("INFO : Validation sample size: {}".format(valudationSampleSize))
    print("INFO : Test sample size: {}".format(testSampleSize))

    train_set = SignalAndTarget(X[:trainingSampleSize],
                                y=y[:trainingSampleSize])
    valid_set = SignalAndTarget(
        X[trainingSampleSize:(trainingSampleSize + valudationSampleSize)],
        y=y[trainingSampleSize:(trainingSampleSize + valudationSampleSize)])
    test_set = SignalAndTarget(X[(trainingSampleSize + valudationSampleSize):],
                               y=y[(trainingSampleSize +
                                    valudationSampleSize):])

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 3
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model_type == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model_type == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    elif model_type == 'eegnet':
        model = EEGNetv4(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    # th.save(model, "models\{}-cropped-singleSubjectNum{}-{}sec-{}epoches-torch_model".format(model_type, single_subject_num, ((trial_length - 1) / 256), epoches))
    return exp
Пример #12
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    max_epochs = 1600
    max_increase_epochs = 160
    batch_size = 60
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = 0.2

    train_filename = "A{:02d}T.gdf".format(subject_id)
    test_filename = "A{:02d}E.gdf".format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace(".gdf", ".mat")
    test_label_filepath = test_filepath.replace(".gdf", ".mat")

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath
    )
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath
    )
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ["EOG-left", "EOG-central", "EOG-right"]
    )
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a,
            low_cut_hz,
            high_cut_hz,
            train_cnt.info["sfreq"],
            filt_order=3,
            axis=1,
        ),
        train_cnt,
    )
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T,
            factor_new=factor_new,
            init_block_size=init_block_size,
            eps=1e-4,
        ).T,
        train_cnt,
    )

    test_cnt = test_cnt.drop_channels(["EOG-left", "EOG-central", "EOG-right"])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a,
            low_cut_hz,
            high_cut_hz,
            test_cnt.info["sfreq"],
            filt_order=3,
            axis=1,
        ),
        test_cnt,
    )
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T,
            factor_new=factor_new,
            init_block_size=init_block_size,
            eps=1e-4,
        ).T,
        test_cnt,
    )

    marker_def = OrderedDict(
        [
            ("Left Hand", [1]),
            ("Right Hand", [2]),
            ("Foot", [3]),
            ("Tongue", [4]),
        ]
    )

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(
        train_set, first_set_fraction=1 - valid_set_fraction
    )

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == "shallow":
        model = ShallowFBCSPNet(
            n_chans,
            n_classes,
            input_time_length=input_time_length,
            final_conv_length="auto",
        ).create_network()
    elif model == "deep":
        model = Deep4Net(
            n_chans,
            n_classes,
            input_time_length=input_time_length,
            final_conv_length="auto",
        ).create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or(
        [
            MaxEpochs(max_epochs),
            NoDecrease("valid_misclass", max_increase_epochs),
        ]
    )

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(
        model,
        train_set,
        valid_set,
        test_set,
        iterator=iterator,
        loss_function=F.nll_loss,
        optimizer=optimizer,
        model_constraint=model_constraint,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_column="valid_misclass",
        run_after_early_stop=True,
        cuda=cuda,
    )
    exp.run()
    return exp
Пример #13
0
def run_experiment(train_set, valid_set, test_set, model_name, optimizer_name,
                   init_lr, scheduler_name, use_norm_constraint, weight_decay,
                   schedule_weight_decay, restarts, max_epochs,
                   max_increase_epochs, np_th_seed):
    set_random_seeds(np_th_seed, cuda=True)
    #torch.backends.cudnn.benchmark = True# sometimes crashes?
    if valid_set is not None:
        assert max_increase_epochs is not None
    assert (max_epochs is None) != (restarts is None)
    if max_epochs is None:
        max_epochs = np.sum(restarts)
    n_classes = int(np.max(train_set.y) + 1)
    n_chans = int(train_set.X.shape[1])
    input_time_length = 1000
    if model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()
    elif model_name == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()
    elif model_name in [
            'resnet-he-uniform', 'resnet-he-normal', 'resnet-xavier-normal',
            'resnet-xavier-uniform'
    ]:
        init_name = model_name.lstrip('resnet-')
        from torch.nn import init
        init_fn = {
            'he-uniform': lambda w: init.kaiming_uniform(w, a=0),
            'he-normal': lambda w: init.kaiming_normal(w, a=0),
            'xavier-uniform': lambda w: init.xavier_uniform(w, gain=1),
            'xavier-normal': lambda w: init.xavier_normal(w, gain=1)
        }[init_name]
        model = EEGResNet(in_chans=n_chans,
                          n_classes=n_classes,
                          input_time_length=input_time_length,
                          final_pool_length=10,
                          n_first_filters=48,
                          conv_weight_init_fn=init_fn).create_network()
    else:
        raise ValueError("Unknown model name {:s}".format(model_name))
    if 'resnet' not in model_name:
        to_dense_prediction_model(model)
    model.cuda()
    model.eval()

    out = model(np_to_var(train_set.X[:1, :, :input_time_length, None]).cuda())

    n_preds_per_input = out.cpu().data.numpy().shape[2]

    if optimizer_name == 'adam':
        optimizer = optim.Adam(model.parameters(),
                               weight_decay=weight_decay,
                               lr=init_lr)
    elif optimizer_name == 'adamw':
        optimizer = AdamW(model.parameters(),
                          weight_decay=weight_decay,
                          lr=init_lr)

    iterator = CropsFromTrialsIterator(batch_size=60,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input,
                                       seed=np_th_seed)

    if scheduler_name is not None:
        assert schedule_weight_decay == (optimizer_name == 'adamw')
        if scheduler_name == 'cosine':
            n_updates_per_epoch = sum(
                [1 for _ in iterator.get_batches(train_set, shuffle=True)])
            if restarts is None:
                n_updates_per_period = n_updates_per_epoch * max_epochs
            else:
                n_updates_per_period = np.array(restarts) * n_updates_per_epoch
            scheduler = CosineAnnealing(n_updates_per_period)
            optimizer = ScheduledOptimizer(
                scheduler,
                optimizer,
                schedule_weight_decay=schedule_weight_decay)
        elif scheduler_name == 'cut_cosine':
            # TODO: integrate with if clause before, now just separate
            # to avoid messing with code
            n_updates_per_epoch = sum(
                [1 for _ in iterator.get_batches(train_set, shuffle=True)])
            if restarts is None:
                n_updates_per_period = n_updates_per_epoch * max_epochs
            else:
                n_updates_per_period = np.array(restarts) * n_updates_per_epoch
            scheduler = CutCosineAnnealing(n_updates_per_period)
            optimizer = ScheduledOptimizer(
                scheduler,
                optimizer,
                schedule_weight_decay=schedule_weight_decay)
        else:
            raise ValueError("Unknown scheduler")
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    if use_norm_constraint:
        model_constraint = MaxNormDefaultConstraint()
    else:
        model_constraint = None
    # change here this cell
    loss_function = lambda preds, targets: F.nll_loss(th.mean(preds, dim=2),
                                                      targets)

    if valid_set is not None:
        run_after_early_stop = True
        do_early_stop = True
        remember_best_column = 'valid_misclass'
        stop_criterion = Or([
            MaxEpochs(max_epochs),
            NoDecrease('valid_misclass', max_increase_epochs)
        ])
    else:
        run_after_early_stop = False
        do_early_stop = False
        remember_best_column = None
        stop_criterion = MaxEpochs(max_epochs)

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column=remember_best_column,
                     run_after_early_stop=run_after_early_stop,
                     cuda=True,
                     do_early_stop=do_early_stop)
    exp.run()
    return exp
def run_exp(
    data_folders,
    n_recordings,
    sensor_types,
    n_chans,
    max_recording_mins,
    sec_to_cut,
    duration_recording_mins,
    test_recording_mins,
    max_abs_val,
    sampling_freq,
    divisor,
    test_on_eval,
    n_folds,
    i_test_fold,
    shuffle,
    model_name,
    n_start_chans,
    n_chan_factor,
    input_time_length,
    final_conv_length,
    model_constraint,
    init_lr,
    batch_size,
    max_epochs,
    cuda,
):

    import torch.backends.cudnn as cudnn
    cudnn.benchmark = True
    preproc_functions = []
    preproc_functions.append(lambda data, fs: (
        data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs))
    preproc_functions.append(lambda data, fs: (data[:, :int(
        duration_recording_mins * 60 * fs)], fs))
    if max_abs_val is not None:
        preproc_functions.append(
            lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs))

    preproc_functions.append(lambda data, fs: (resampy.resample(
        data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq))

    if divisor is not None:
        preproc_functions.append(lambda data, fs: (data / divisor, fs))

    dataset = DiagnosisSet(n_recordings=n_recordings,
                           max_recording_mins=max_recording_mins,
                           preproc_functions=preproc_functions,
                           data_folders=data_folders,
                           train_or_eval='train',
                           sensor_types=sensor_types)
    if test_on_eval:
        if test_recording_mins is None:
            test_recording_mins = duration_recording_mins
        test_preproc_functions = copy(preproc_functions)
        test_preproc_functions[1] = lambda data, fs: (data[:, :int(
            test_recording_mins * 60 * fs)], fs)
        test_dataset = DiagnosisSet(n_recordings=n_recordings,
                                    max_recording_mins=None,
                                    preproc_functions=test_preproc_functions,
                                    data_folders=data_folders,
                                    train_or_eval='eval',
                                    sensor_types=sensor_types)
    X, y = dataset.load()
    max_shape = np.max([list(x.shape) for x in X], axis=0)
    assert max_shape[1] == int(duration_recording_mins * sampling_freq * 60)
    if test_on_eval:
        test_X, test_y = test_dataset.load()
        max_shape = np.max([list(x.shape) for x in test_X], axis=0)
        assert max_shape[1] == int(test_recording_mins * sampling_freq * 60)
    if not test_on_eval:
        splitter = TrainValidTestSplitter(n_folds,
                                          i_test_fold,
                                          shuffle=shuffle)
        train_set, valid_set, test_set = splitter.split(X, y)
    else:
        splitter = TrainValidSplitter(n_folds,
                                      i_valid_fold=i_test_fold,
                                      shuffle=shuffle)
        train_set, valid_set = splitter.split(X, y)
        test_set = SignalAndTarget(test_X, test_y)
        del test_X, test_y
    del X, y  # shouldn't be necessary, but just to make sure

    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         stride_before_pool=True).create_network()
    elif (model_name == 'deep_smac'):
        if model_name == 'deep_smac':
            do_batch_norm = False
        else:
            assert model_name == 'deep_smac_bnorm'
            do_batch_norm = True
        double_time_convs = False
        drop_prob = 0.244445
        filter_length_2 = 12
        filter_length_3 = 14
        filter_length_4 = 12
        filter_time_length = 21
        final_conv_length = 1
        first_nonlin = elu
        first_pool_mode = 'mean'
        first_pool_nonlin = identity
        later_nonlin = elu
        later_pool_mode = 'mean'
        later_pool_nonlin = identity
        n_filters_factor = 1.679066
        n_filters_start = 32
        pool_time_length = 1
        pool_time_stride = 2
        split_first_layer = True
        n_chan_factor = n_filters_factor
        n_start_chans = n_filters_start
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         batch_norm=do_batch_norm,
                         double_time_convs=double_time_convs,
                         drop_prob=drop_prob,
                         filter_length_2=filter_length_2,
                         filter_length_3=filter_length_3,
                         filter_length_4=filter_length_4,
                         filter_time_length=filter_time_length,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         split_first_layer=split_first_layer,
                         stride_before_pool=True).create_network()
    elif model_name == 'shallow_smac':
        conv_nonlin = identity
        do_batch_norm = True
        drop_prob = 0.328794
        filter_time_length = 56
        final_conv_length = 22
        n_filters_spat = 73
        n_filters_time = 24
        pool_mode = 'max'
        pool_nonlin = identity
        pool_time_length = 84
        pool_time_stride = 3
        split_first_layer = True
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_filters_time,
            n_filters_spat=n_filters_spat,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length,
            conv_nonlin=conv_nonlin,
            batch_norm=do_batch_norm,
            drop_prob=drop_prob,
            filter_time_length=filter_time_length,
            pool_mode=pool_mode,
            pool_nonlin=pool_nonlin,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            split_first_layer=split_first_layer,
        ).create_network()
    elif model_name == 'linear':
        model = nn.Sequential()
        model.add_module("conv_classifier",
                         nn.Conv2d(n_chans, n_classes, (600, 1)))
        model.add_module('softmax', nn.LogSoftmax())
        model.add_module('squeeze', Expression(lambda x: x.squeeze(3)))
    else:
        assert False, "unknown model name {:s}".format(model_name)
    to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    # determine output size
    test_input = np_to_var(
        np.ones((2, n_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    log.info("In shape: {:s}".format(str(test_input.cpu().data.numpy().shape)))

    out = model(test_input)
    log.info("Out shape: {:s}".format(str(out.cpu().data.numpy().shape)))
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    optimizer = optim.Adam(model.parameters(), lr=init_lr)

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    if model_constraint is not None:
        assert model_constraint == 'defaultnorm'
        model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedDiagnosisMonitor(input_time_length, n_preds_per_input),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    batch_modifier = None
    run_after_early_stop = True
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=run_after_early_stop,
                     batch_modifier=batch_modifier,
                     cuda=cuda)
    exp.run()
    return exp
Пример #15
0
    def train_model(self, train_set, val_set, test_set, save_model):
        """
        :param train_set: EEG data (n_trials*n_channels*n_samples)
        :param val_set: EEG data (n_trials*n_channels*n_samples)
        :param test_set: EEG data (n_trials*n_channels*n_samples) - can be None when training on inner-fold
        :param save_model: Boolean: True if trained model is to be saved
        :return: Accuracy and loss scores for the model trained with a given set of hyper-parameters
        """
        predictions = None
        model = None
        model = self.call_model()

        set_random_seeds(seed=20190629, cuda=self.cuda)

        if self.cuda:
            model.cuda()
            torch.backends.cudnn.deterministic = True

        log.info("%s model: ".format(str(model)))
        optimizer = optim.Adam(model.parameters(),
                               lr=self.learning_rate,
                               weight_decay=0,
                               eps=1e-8,
                               amsgrad=False)
        stop_criterion = Or([
            MaxEpochs(self.epochs),
            NoDecrease('valid_misclass', self.max_increase_epochs)
        ])

        model_loss_function = None

        #####Setup to run the selected model#####
        model_test = Experiment(model,
                                train_set,
                                val_set,
                                test_set=test_set,
                                iterator=self.iterator,
                                loss_function=self.loss,
                                optimizer=optimizer,
                                model_constraint=self.model_constraint,
                                monitors=self.monitors,
                                stop_criterion=stop_criterion,
                                remember_best_column='valid_misclass',
                                run_after_early_stop=True,
                                model_loss_function=model_loss_function,
                                cuda=self.cuda,
                                data_type=self.data_type,
                                model_type=self.model_type,
                                subject_id=self.subject,
                                model_number=str(self.model_number),
                                save_model=save_model)
        model_test.run()

        model_acc = model_test.epochs_df['valid_misclass'].astype('float')
        model_loss = model_test.epochs_df['valid_loss'].astype('float')
        current_val_acc = 1 - current_acc(model_acc)
        current_val_loss = current_loss(model_loss)

        test_accuracy = None
        if test_set is not None:
            test_accuracy = round(
                (1 - model_test.epochs_df['test_misclass'].min()) * 100, 3)
            predictions = model_test.predictions
        probabilities = model_test.probabilites

        return current_val_acc, current_val_loss, test_accuracy, model_test, predictions, probabilities
Пример #16
0
        for CV in np.arange(0, num_folds):
            print('Subject No.{} CV {}'.format(i, CV))
            # 5th phase: Model evaluation (test)
            train_set = SignalAndTarget(X, y=y)
            # 80% training, 20% test
            train_set, test_set = split_into_train_test(
                train_set,
                n_folds=num_folds,
                i_test_fold=CV,
                rng=RandomState((2019, 28, 6)))  #RandomState((2019, 28, 6))
            # 5% training, 95% test
            #test_set, train_set = split_into_train_test(train_set, n_folds = num_folds, i_test_fold = CV, rng=None)

            cuda_avail = th.cuda.is_available()
            set_random_seeds(seed=20190628, cuda=cuda_avail)

            n_classes = 2
            in_chans = train_set.X.shape[1]  # number of channels = 128
            input_time_length = 150  # length of time of each epoch/trial = 4000

            model = ShallowFBCSPNet(
                split_first_layer=False,
                in_chans=in_chans,
                n_classes=n_classes,
                input_time_length=input_time_length,
                final_conv_length='auto',
            )

            #model = Deep4Net(in_chans=in_chans, n_classes=n_classes,
            #                        input_time_length=input_time_length,
Пример #17
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    input_time_length = 1000
    max_epochs = 800
    max_increase_epochs = 80
    batch_size = 60
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = 0.2

    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(train_filepath,
                                        labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), (
        'Right Hand',
        [2],
    ), ('Foot', [3]), ('Tongue', [4])])

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=1 -
                                               valid_set_fraction)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()

    to_dense_prediction_model(model)
    if cuda:
        model.cuda()

    log.info("Model: \n{:s}".format(str(model)))
    dummy_input = np_to_var(train_set.X[:1, :, :, None])
    if cuda:
        dummy_input = dummy_input.cuda()
    out = model(dummy_input)

    n_preds_per_input = out.cpu().data.numpy().shape[2]

    optimizer = optim.Adam(model.parameters())

    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
Пример #18
0
def run_exp_on_high_gamma_dataset(train_filename, test_filename, low_cut_hz,
                                  model_name, max_epochs, max_increase_epochs,
                                  np_th_seed, debug):
    train_set, valid_set, test_set = load_train_valid_test(
        train_filename=train_filename,
        test_filename=test_filename,
        low_cut_hz=low_cut_hz,
        debug=debug)
    if debug:
        max_epochs = 4

    set_random_seeds(np_th_seed, cuda=True)
    #torch.backends.cudnn.benchmark = True# sometimes crashes?
    n_classes = int(np.max(train_set.y) + 1)
    n_chans = int(train_set.X.shape[1])
    input_time_length = 1000
    if model_name == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length=2).create_network()
    elif model_name == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length=30).create_network()

    to_dense_prediction_model(model)
    model.cuda()
    model.eval()

    out = model(np_to_var(train_set.X[:1, :, :input_time_length, None]).cuda())

    n_preds_per_input = out.cpu().data.numpy().shape[2]
    optimizer = optim.Adam(model.parameters(), weight_decay=0, lr=1e-3)

    iterator = CropsFromTrialsIterator(batch_size=60,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input,
                                       seed=np_th_seed)

    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length=input_time_length),
        RuntimeMonitor()
    ]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(th.mean(preds, dim=2),
                                                      targets)

    run_after_early_stop = True
    do_early_stop = True
    remember_best_column = 'valid_misclass'
    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=loss_function,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column=remember_best_column,
                     run_after_early_stop=run_after_early_stop,
                     cuda=True,
                     do_early_stop=do_early_stop)
    exp.run()
    return exp
Пример #19
0
def test_trialwise_decoding():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [
        mne.io.read_raw_edf(path,
                            preload=True,
                            stim_channel='auto',
                            verbose='WARNING') for path in physionet_paths
    ]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info,
                                      meg=False,
                                      eeg=True,
                                      stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw,
                         events,
                         dict(hands=2, feet=3),
                         tmin=1,
                         tmax=4.1,
                         proj=False,
                         picks=eeg_channel_inds,
                         baseline=None,
                         preload=True)

    import numpy as np

    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    from braindecode.datautil.signal_target import SignalAndTarget

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])

    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length = auto ensures we only get a single output in the time dimension
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=train_set.X.shape[2],
                            final_conv_length='auto').create_network()
    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())

    from braindecode.torch_ext.util import np_to_var, var_to_np
    from braindecode.datautil.iterators import get_balanced_batches
    import torch.nn.functional as F
    from numpy.random import RandomState

    rng = RandomState((2017, 6, 30))
    losses = []
    accuracies = []
    for i_epoch in range(6):
        i_trials_in_batch = get_balanced_batches(len(train_set.X),
                                                 rng,
                                                 shuffle=True,
                                                 batch_size=30)
        # Set model to training mode
        model.train()
        for i_trials in i_trials_in_batch:
            # Have to add empty fourth dimension to X
            batch_X = train_set.X[i_trials][:, :, :, None]
            batch_y = train_set.y[i_trials]
            net_in = np_to_var(batch_X)
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(batch_y)
            if cuda:
                net_target = net_target.cuda()
            # Remove gradients of last backward pass from all parameters
            optimizer.zero_grad()
            # Compute outputs of the network
            outputs = model(net_in)
            # Compute the loss
            loss = F.nll_loss(outputs, net_target)
            # Do the backpropagation
            loss.backward()
            # Update parameters with the optimizer
            optimizer.step()

        # Print some statistics each epoch
        model.eval()
        print("Epoch {:d}".format(i_epoch))
        for setname, dataset in (('Train', train_set), ('Test', test_set)):
            # Here, we will use the entire dataset at once, which is still possible
            # for such smaller datasets. Otherwise we would have to use batches.
            net_in = np_to_var(dataset.X[:, :, :, None])
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(dataset.y)
            if cuda:
                net_target = net_target.cuda()
            outputs = model(net_in)
            loss = F.nll_loss(outputs, net_target)
            losses.append(float(var_to_np(loss)))
            print("{:6s} Loss: {:.5f}".format(setname, float(var_to_np(loss))))
            predicted_labels = np.argmax(var_to_np(outputs), axis=1)
            accuracy = np.mean(dataset.y == predicted_labels)
            accuracies.append(accuracy * 100)
            print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100))

    np.testing.assert_allclose(np.array(losses),
                               np.array([
                                   1.1775966882705688, 1.2602351903915405,
                                   0.7068756818771362, 0.9367912411689758,
                                   0.394258975982666, 0.6598362326622009,
                                   0.3359280526638031, 0.656258761882782,
                                   0.2790488004684448, 0.6104397177696228,
                                   0.27319177985191345, 0.5949864983558655
                               ]),
                               rtol=1e-4,
                               atol=1e-5)

    np.testing.assert_allclose(np.array(accuracies),
                               np.array([
                                   51.666666666666671, 53.333333333333336,
                                   63.333333333333329, 56.666666666666664,
                                   86.666666666666671, 66.666666666666657,
                                   90.0, 63.333333333333329,
                                   96.666666666666671, 56.666666666666664,
                                   96.666666666666671, 66.666666666666657
                               ]),
                               rtol=1e-4,
                               atol=1e-5)
Пример #20
0
def test_experiment_class():
    import mne
    from mne.io import concatenate_raws

    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [mne.io.read_raw_edf(path, preload=True, stim_channel='auto',
                                 verbose='WARNING')
             for path in physionet_paths]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events, _ = mne.events_from_annotations(raw)

    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1,
                         proj=False, picks=eeg_channel_inds,
                         baseline=None, preload=True)
    import numpy as np
    from braindecode.datautil.signal_target import SignalAndTarget
    from braindecode.datautil.splitters import split_into_two_sets
    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    train_set = SignalAndTarget(X[:60], y=y[:60])
    test_set = SignalAndTarget(X[60:], y=y[60:])

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)
    from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
    from torch import nn
    from braindecode.torch_ext.util import set_random_seeds
    from braindecode.models.util import to_dense_prediction_model

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    input_time_length = 450
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=12).create_network()
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    from torch import optim

    optimizer = optim.Adam(model.parameters())

    from braindecode.torch_ext.util import np_to_var
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    print("{:d} predictions per input/trial".format(n_preds_per_input))

    from braindecode.experiments.experiment import Experiment
    from braindecode.datautil.iterators import CropsFromTrialsIterator
    from braindecode.experiments.monitors import RuntimeMonitor, LossMonitor, \
        CroppedTrialMisclassMonitor, MisclassMonitor
    from braindecode.experiments.stopcriteria import MaxEpochs
    import torch.nn.functional as F
    import torch as th
    from braindecode.torch_ext.modules import Expression
    # Iterator is used to iterate over datasets both for training
    # and evaluation
    iterator = CropsFromTrialsIterator(batch_size=32,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    # Loss function takes predictions as they come out of the network and the targets
    # and returns a loss
    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    # Could be used to apply some constraint on the models, then should be object
    # with apply method that accepts a module
    model_constraint = None
    # Monitors log the training progress
    monitors = [LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'),
                CroppedTrialMisclassMonitor(input_time_length),
                RuntimeMonitor(), ]
    # Stop criterion determines when the first stop happens
    stop_criterion = MaxEpochs(4)
    exp = Experiment(model, train_set, valid_set, test_set, iterator,
                     loss_function, optimizer, model_constraint,
                     monitors, stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True, batch_modifier=None, cuda=cuda)

    # need to setup python logging before to be able to see anything
    import logging
    import sys
    logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s',
                        level=logging.DEBUG, stream=sys.stdout)
    exp.run()

    import pandas as pd
    from io import StringIO
    compare_df = pd.read_csv(StringIO(
        'train_loss,valid_loss,test_loss,train_sample_misclass,valid_sample_misclass,'
        'test_sample_misclass,train_misclass,valid_misclass,test_misclass\n'
        '14.167170524597168,13.910758018493652,15.945781707763672,0.5,0.5,'
        '0.5333333333333333,0.5,0.5,0.5333333333333333\n'
        '1.1735659837722778,1.4342904090881348,1.8664429187774658,0.4629567736185384,'
        '0.5120320855614973,0.5336007130124778,0.5,0.5,0.5333333333333333\n'
        '1.3168460130691528,1.60431969165802,1.9181344509124756,0.49298128342245995,'
        '0.5109180035650625,0.531729055258467,0.5,0.5,0.5333333333333333\n'
        '0.8465543389320374,1.280307412147522,1.439755916595459,0.4413435828877005,'
        '0.5461229946524064,0.5283422459893048,0.47916666666666663,0.5,'
        '0.5333333333333333\n0.6977059841156006,1.1762590408325195,1.2779350280761719,'
        '0.40290775401069523,0.588903743315508,0.5307486631016043,0.5,0.5,0.5\n'
        '0.7934166193008423,1.1762590408325195,1.2779350280761719,0.4401069518716577,'
        '0.588903743315508,0.5307486631016043,0.5,0.5,0.5\n0.5982189178466797,'
        '0.8581563830375671,0.9598925113677979,0.32032085561497325,0.47660427807486627,'
        '0.4672905525846702,0.31666666666666665,0.5,0.4666666666666667\n0.5044312477111816,'
        '0.7133197784423828,0.8164243102073669,0.2591354723707665,0.45699643493761144,'
        '0.4393048128342246,0.16666666666666663,0.41666666666666663,0.43333333333333335\n'
        '0.4815250039100647,0.6736412644386292,0.8016976714134216,0.23413547237076648,'
        '0.39505347593582885,0.42932263814616756,0.15000000000000002,0.41666666666666663,0.5\n'))

    for col in compare_df:
        np.testing.assert_allclose(np.array(compare_df[col]),
                                   exp.epochs_df[col],
                                   rtol=1e-3, atol=1e-4)
Пример #21
0
def run_exp(max_recording_mins, n_recordings, sec_to_cut,
            duration_recording_mins, max_abs_val, shrink_val, sampling_freq,
            divisor, n_folds, i_test_fold, final_conv_length, model_constraint,
            batch_size, max_epochs, n_filters_time, n_filters_spat,
            filter_time_length, conv_nonlin, pool_time_length,
            pool_time_stride, pool_mode, pool_nonlin, split_first_layer,
            do_batch_norm, drop_prob, time_cut_off_sec, start_time,
            input_time_length, only_return_exp):
    kwargs = locals()
    for model_param in [
            'final_conv_length',
            'n_filters_time',
            'n_filters_spat',
            'filter_time_length',
            'conv_nonlin',
            'pool_time_length',
            'pool_time_stride',
            'pool_mode',
            'pool_nonlin',
            'split_first_layer',
            'do_batch_norm',
            'drop_prob',
    ]:
        kwargs.pop(model_param)
    nonlin_dict = {
        'elu': elu,
        'relu': relu,
        'relu6': relu6,
        'tanh': tanh,
        'square': square,
        'identity': identity,
        'log': safe_log,
    }
    assert input_time_length == 6000
    # copy over from early seizure
    # make proper
    n_classes = 2
    in_chans = 21
    cuda = True
    set_random_seeds(seed=20170629, cuda=cuda)
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=final_conv_length,
                            n_filters_time=n_filters_time,
                            filter_time_length=filter_time_length,
                            n_filters_spat=n_filters_spat,
                            pool_time_length=pool_time_length,
                            pool_time_stride=pool_time_stride,
                            conv_nonlin=nonlin_dict[conv_nonlin],
                            pool_mode=pool_mode,
                            pool_nonlin=nonlin_dict[pool_nonlin],
                            split_first_layer=split_first_layer,
                            batch_norm=do_batch_norm,
                            batch_norm_alpha=0.1,
                            drop_prob=drop_prob).create_network()

    to_dense_prediction_model(model)
    if cuda:
        model.cuda()
    model.eval()
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()

    try:
        out = model(test_input)
    except RuntimeError:
        raise ValueError("Model receptive field too large...")
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    n_receptive_field = input_time_length - n_preds_per_input

    if n_receptive_field > 6000:
        raise ValueError("Model receptive field ({:d}) too large...".format(
            n_receptive_field))
        # For future, here optionally add input time length instead

    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=input_time_length,
                            final_conv_length=final_conv_length,
                            n_filters_time=n_filters_time,
                            filter_time_length=filter_time_length,
                            n_filters_spat=n_filters_spat,
                            pool_time_length=pool_time_length,
                            pool_time_stride=pool_time_stride,
                            conv_nonlin=nonlin_dict[conv_nonlin],
                            pool_mode=pool_mode,
                            pool_nonlin=nonlin_dict[pool_nonlin],
                            split_first_layer=split_first_layer,
                            batch_norm=do_batch_norm,
                            batch_norm_alpha=0.1,
                            drop_prob=drop_prob).create_network()
    return common.run_exp(model=model, **kwargs)
def test_trialwise_decoding():
    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]
    # event_codes = [6]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes)

    # Load each of the files
    parts = [
        mne.io.read_raw_edf(path,
                            preload=True,
                            stim_channel='auto',
                            verbose='WARNING') for path in physionet_paths
    ]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    # events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014')
    events, _ = mne.events_from_annotations(raw)

    # Extract trials, only using EEG channels
    eeg_channel_inds = mne.pick_types(raw.info,
                                      meg=False,
                                      eeg=True,
                                      stim=False,
                                      eog=False,
                                      exclude='bads')

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(raw,
                         events,
                         dict(hands=2, feet=3),
                         tmin=1,
                         tmax=4.1,
                         proj=False,
                         picks=eeg_channel_inds,
                         baseline=None,
                         preload=True)

    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    # X:[90,64,497]
    X = (epoched.get_data() * 1e6).astype(np.float32)
    # y:[90]
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    # X_train:[60,64,497], y_train:[60]
    train_set = SignalAndTarget(X[:60], y=y[:60])
    # X_test:[30,64,497], y_test:[30]
    test_set = SignalAndTarget(X[60:], y=y[60:])

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)
    n_classes = 2
    in_chans = train_set.X.shape[1]
    # final_conv_length = auto ensures we only get a single output in the time dimension
    # def __init__(self, in_chans=64, n_classes=2, input_time_length=497, n_filters_time=40, filter_time_length=25, n_filters_spat=40, pool_time_length=75, pool_time_stride=15, final_conv_length='auto, conv_nonlin=square, pool_mode="mean", pool_nonlin=safe_log, split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1, drop_prob=0.5, ):
    # 感觉create_network()就是__init__的一部分, 现在改成用self.model调用了, 还是感觉不优雅, 主要是forward集成在nn.Sequential里面了
    # 然后这个model的实际__init__不是ShallowFBCSPNet, 而是nn.Sequential, 感觉我更喜欢原来的定义方式, 这种方式看不到中间输出
    # model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=train_set.X.shape[2], final_conv_length='auto').create_network() #原来的
    model = ShallowFBCSPNet(in_chans=in_chans,
                            n_classes=n_classes,
                            input_time_length=train_set.X.shape[2],
                            final_conv_length='auto').model
    if cuda:
        model.cuda()

    optimizer = optim.Adam(model.parameters())

    rng = RandomState((2017, 6, 30))
    losses = []
    accuracies = []
    for i_epoch in range(6):
        i_trials_in_batch = get_balanced_batches(len(train_set.X),
                                                 rng,
                                                 shuffle=True,
                                                 batch_size=10)
        # Set model to training mode
        model.train()
        for i_trials in i_trials_in_batch:
            # Have to add empty fourth dimension to X
            batch_X = train_set.X[i_trials][:, :, :, None]
            batch_y = train_set.y[i_trials]
            net_in = np_to_var(batch_X)
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(batch_y)
            if cuda:
                net_target = net_target.cuda()
            # Remove gradients of last backward pass from all parameters
            optimizer.zero_grad()
            # Compute outputs of the network
            #net_in: [10, 64, 497, 1]=[bsz, H_im, W_im, C_im]
            #
            outputs = model.forward(net_in)
            # model=Sequential(
            #                   (dimshuffle): Expression(expression=_transpose_time_to_spat)
            #                   (conv_time): Conv2d(1, 40, kernel_size=(25, 1), stride=(1, 1))
            #                   (conv_spat): Conv2d(40, 40, kernel_size=(1, 64), stride=(1, 1), bias=False)
            #                   (bnorm): BatchNorm2d(40, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            #                   (conv_nonlin): Expression(expression=square)
            #                   (pool): AvgPool2d(kernel_size=(75, 1), stride=(15, 1), padding=0)
            #                   (pool_nonlin): Expression(expression=safe_log)
            #                   (drop): Dropout(p=0.5)
            #                   (conv_classifier): Conv2d(40, 2, kernel_size=(27, 1), stride=(1, 1))
            #                   (softmax): LogSoftmax()
            #                   (squeeze): Expression(expression=_squeeze_final_output)
            #                 )
            # Compute the loss
            loss = F.nll_loss(outputs, net_target)
            # Do the backpropagation
            loss.backward()
            # Update parameters with the optimizer
            optimizer.step()

        # Print some statistics each epoch
        model.eval()
        print("Epoch {:d}".format(i_epoch))
        for setname, dataset in (('Train', train_set), ('Test', test_set)):
            # Here, we will use the entire dataset at once, which is still possible
            # for such smaller datasets. Otherwise we would have to use batches.
            net_in = np_to_var(dataset.X[:, :, :, None])
            if cuda:
                net_in = net_in.cuda()
            net_target = np_to_var(dataset.y)
            if cuda:
                net_target = net_target.cuda()
            outputs = model(net_in)
            loss = F.nll_loss(outputs, net_target)
            losses.append(float(var_to_np(loss)))
            print("{:6s} Loss: {:.5f}".format(setname, float(var_to_np(loss))))
            predicted_labels = np.argmax(var_to_np(outputs), axis=1)
            accuracy = np.mean(dataset.y == predicted_labels)
            accuracies.append(accuracy * 100)
            print("{:6s} Accuracy: {:.1f}%".format(setname, accuracy * 100))

    np.testing.assert_allclose(np.array(losses),
                               np.array([
                                   1.1775966882705688, 1.2602351903915405,
                                   0.7068756818771362, 0.9367912411689758,
                                   0.394258975982666, 0.6598362326622009,
                                   0.3359280526638031, 0.656258761882782,
                                   0.2790488004684448, 0.6104397177696228,
                                   0.27319177985191345, 0.5949864983558655
                               ]),
                               rtol=1e-4,
                               atol=1e-5)

    np.testing.assert_allclose(np.array(accuracies),
                               np.array([
                                   51.666666666666671, 53.333333333333336,
                                   63.333333333333329, 56.666666666666664,
                                   86.666666666666671, 66.666666666666657,
                                   90.0, 63.333333333333329,
                                   96.666666666666671, 56.666666666666664,
                                   96.666666666666671, 66.666666666666657
                               ]),
                               rtol=1e-4,
                               atol=1e-5)
def run_exp(max_recording_mins, n_recordings, sec_to_cut,
            duration_recording_mins, max_abs_val, max_min_threshold,
            max_min_expected, shrink_val, max_min_remove, batch_set_zero_val,
            batch_set_zero_test, sampling_freq, low_cut_hz, high_cut_hz,
            exp_demean, exp_standardize, moving_demean, moving_standardize,
            channel_demean, channel_standardize, divisor, n_folds, i_test_fold,
            input_time_length, final_conv_length, pool_stride, n_blocks_to_add,
            sigmoid, model_constraint, batch_size, max_epochs,
            only_return_exp):
    cuda = True

    preproc_functions = []
    preproc_functions.append(lambda data, fs: (
        data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs))
    preproc_functions.append(lambda data, fs: (data[:, :int(
        duration_recording_mins * 60 * fs)], fs))
    if max_abs_val is not None:
        preproc_functions.append(
            lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs))
    if max_min_threshold is not None:
        preproc_functions.append(lambda data, fs: (clean_jumps(
            data, 200, max_min_threshold, max_min_expected, cuda), fs))
    if max_min_remove is not None:
        window_len = 200
        preproc_functions.append(lambda data, fs: (set_jumps_to_zero(
            data,
            window_len=window_len,
            threshold=max_min_remove,
            cuda=cuda,
            clip_min_max_to_zero=True), fs))

    if shrink_val is not None:
        preproc_functions.append(lambda data, fs: (shrink_spikes(
            data,
            shrink_val,
            1,
            9,
        ), fs))

    preproc_functions.append(lambda data, fs: (resampy.resample(
        data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq))
    preproc_functions.append(lambda data, fs: (bandpass_cnt(
        data, low_cut_hz, high_cut_hz, fs, filt_order=4, axis=1), fs))

    if exp_demean:
        preproc_functions.append(lambda data, fs: (exponential_running_demean(
            data.T, factor_new=0.001, init_block_size=100).T, fs))
    if exp_standardize:
        preproc_functions.append(
            lambda data, fs: (exponential_running_standardize(
                data.T, factor_new=0.001, init_block_size=100).T, fs))
    if moving_demean:
        preproc_functions.append(lambda data, fs: (padded_moving_demean(
            data, axis=1, n_window=201), fs))
    if moving_standardize:
        preproc_functions.append(lambda data, fs: (padded_moving_standardize(
            data, axis=1, n_window=201), fs))
    if channel_demean:
        preproc_functions.append(lambda data, fs: (demean(data, axis=1), fs))
    if channel_standardize:
        preproc_functions.append(lambda data, fs:
                                 (standardize(data, axis=1), fs))
    if divisor is not None:
        preproc_functions.append(lambda data, fs: (data / divisor, fs))

    dataset = DiagnosisSet(n_recordings=n_recordings,
                           max_recording_mins=max_recording_mins,
                           preproc_functions=preproc_functions)
    if not only_return_exp:
        X, y = dataset.load()

    splitter = Splitter(
        n_folds,
        i_test_fold,
    )
    if not only_return_exp:
        train_set, valid_set, test_set = splitter.split(X, y)
        del X, y  # shouldn't be necessary, but just to make sure
    else:
        train_set = None
        valid_set = None
        test_set = None

    set_random_seeds(seed=20170629, cuda=cuda)
    if sigmoid:
        n_classes = 1
    else:
        n_classes = 2
    in_chans = 21

    net = Deep4Net(
        in_chans=in_chans,
        n_classes=n_classes,
        input_time_length=input_time_length,
        final_conv_length=final_conv_length,
        pool_time_length=pool_stride,
        pool_time_stride=pool_stride,
        n_filters_2=50,
        n_filters_3=80,
        n_filters_4=120,
    )
    model = net_with_more_layers(net, n_blocks_to_add, nn.MaxPool2d)
    if sigmoid:
        model = to_linear_plus_minus_net(model)
    optimizer = optim.Adam(model.parameters())
    to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    if cuda:
        model.cuda()
    # determine output size
    test_input = np_to_var(
        np.ones((2, in_chans, input_time_length, 1), dtype=np.float32))
    if cuda:
        test_input = test_input.cuda()
    out = model(test_input)
    n_preds_per_input = out.cpu().data.numpy().shape[2]
    log.info("{:d} predictions per input/trial".format(n_preds_per_input))
    iterator = CropsFromTrialsIterator(batch_size=batch_size,
                                       input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)
    if sigmoid:
        loss_function = lambda preds, targets: binary_cross_entropy_with_logits(
            th.mean(preds, dim=2)[:, 1, 0], targets.type_as(preds))
    else:
        loss_function = lambda preds, targets: F.nll_loss(
            th.mean(preds, dim=2)[:, :, 0], targets)

    if model_constraint is not None:
        model_constraint = MaxNormDefaultConstraint()
    monitors = [
        LossMonitor(),
        MisclassMonitor(col_suffix='sample_misclass'),
        CroppedTrialMisclassMonitor(input_time_length),
        RuntimeMonitor(),
    ]
    stop_criterion = MaxEpochs(max_epochs)
    batch_modifier = None
    if batch_set_zero_val is not None:
        batch_modifier = RemoveMinMaxDiff(batch_set_zero_val,
                                          clip_max_abs=True,
                                          set_zero=True)
    if (batch_set_zero_val is not None) and (batch_set_zero_test == True):
        iterator = ModifiedIterator(
            iterator,
            batch_modifier,
        )
        batch_modifier = None
    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator,
                     loss_function,
                     optimizer,
                     model_constraint,
                     monitors,
                     stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     batch_modifier=batch_modifier,
                     cuda=cuda)
    if not only_return_exp:
        exp.run()
    else:
        exp.dataset = dataset
        exp.splitter = splitter

    return exp
    def train_model(self, train_set_1, val_set_1, test_set_1, train_set_2,
                    val_set_2, test_set_2, save_model):
        """
        :param train_set_1: (np.array) n_trials*n_channels*n_samples
        :param val_set_1: (np.array) n_trials*n_channels*n_samples
        :param test_set_1: (np.array) n_trials*n_channels*n_samples - can be None when training on inner-fold
        :param train_set_2: (np.array) n_trials*n_channels*n_samples
        :param val_set_2: (np.array) n_trials*n_channels*n_samples
        :param test_set_2:  (np.array) n_trials*n_channels*n_samples - can be None when training on inner-fold
        :param save_model: (Bool) True if trained model is to be saved
        :return: Accuracy and loss scores for the model trained with a given set of hyper-parameters
        """
        model = self.call_model()
        predictions = None

        set_random_seeds(seed=20190629, cuda=self.cuda)

        if self.cuda:
            model.cuda()
            torch.backends.cudnn.deterministic = True
            model = torch.nn.DataParallel(model)
            log.info(f"Cuda in use")

        log.info("%s model: ".format(str(model)))
        optimizer = optim.Adam(model.parameters(),
                               lr=self.learning_rate,
                               weight_decay=0.01,
                               eps=1e-8,
                               amsgrad=False)

        stop_criterion = Or([
            MaxEpochs(self.epochs),
            NoDecrease('valid_loss', self.max_increase_epochs)
        ])
        model_loss_function = None

        #####Setup to run the selected model#####
        model_test = Experiment(model,
                                train_set_1,
                                val_set_1,
                                train_set_2,
                                val_set_2,
                                test_set_1=test_set_1,
                                test_set_2=test_set_2,
                                iterator=self.iterator,
                                loss_function=self.loss,
                                optimizer=optimizer,
                                lr_scheduler=self.lr_scheduler(
                                    optimizer,
                                    step_size=self.lr_step,
                                    gamma=self.lr_gamma),
                                model_constraint=self.model_constraint,
                                monitors=self.monitors,
                                stop_criterion=stop_criterion,
                                remember_best_column='valid_misclass',
                                run_after_early_stop=True,
                                model_loss_function=model_loss_function,
                                cuda=self.cuda,
                                save_file=self.model_save_path,
                                tag=self.tag,
                                save_model=save_model)
        model_test.run()

        model_acc = model_test.epochs_df['valid_misclass'].astype('float')
        model_loss = model_test.epochs_df['valid_loss'].astype('float')
        current_val_acc = 1 - current_acc(model_acc)
        current_val_loss = current_loss(model_loss)

        test_accuracy = None
        if train_set_1 is not None and test_set_2 is not None:
            val_metric_index = self.get_model_index(model_test.epochs_df)
            test_accuracy = round(
                (1 -
                 model_test.epochs_df['test_misclass'].iloc[val_metric_index])
                * 100, 3)
            predictions = model_test.model_predictions
        probabilities = model_test.model_probabilities

        return current_val_acc, current_val_loss, test_accuracy, model_test, predictions, probabilities
Пример #25
0
def run_exp(data_folder, session_id, subject_id, low_cut_hz, model, cuda):
    ival = [-500, 4000]
    max_epochs = 1600
    max_increase_epochs = 160
    batch_size = 10
    high_cut_hz = 38
    factor_new = 1e-3
    init_block_size = 1000
    valid_set_fraction = .2
    ''' # BCIcompetition
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(
        train_filepath, labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(
        test_filepath, labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()
    '''

    # GIGAscience
    filename = 'sess{:02d}_subj{:02d}_EEG_MI.mat'.format(
        session_id, subject_id)
    filepath = os.path.join(data_folder, filename)
    train_variable = 'EEG_MI_train'
    test_variable = 'EEG_MI_test'

    train_loader = GIGAscience(filepath, train_variable)
    test_loader = GIGAscience(filepath, test_variable)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing
    ''' channel
    ['Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FC5', 'FC1', 'FC2', 'FC6', 'T7', 'C3', 'Cz', 'C4', 'T8', 'TP9', 'CP5',
     'CP1', 'CP2', 'CP6', 'TP10', 'P7', 'P3', 'Pz', 'P4', 'P8', 'PO9', 'O1', 'Oz', 'O2', 'PO10', 'FC3', 'FC4', 'C5',
     'C1', 'C2', 'C6', 'CP3', 'CPz', 'CP4', 'P1', 'P2', 'POz', 'FT9', 'FTT9h', 'TTP7h', 'TP7', 'TPP9h', 'FT10',
     'FTT10h', 'TPP8h', 'TP8', 'TPP10h', 'F9', 'F10', 'AF7', 'AF3', 'AF4', 'AF8', 'PO3', 'PO4']
    '''

    train_cnt = train_cnt.pick_channels([
        'FC5', 'FC3', 'FC1', 'Fz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz',
        'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Pz'
    ])
    train_cnt, train_cnt.info['events'] = train_cnt.copy().resample(
        250, npad='auto', events=train_cnt.info['events'])

    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               train_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.pick_channels([
        'FC5', 'FC3', 'FC1', 'Fz', 'FC2', 'FC4', 'FC6', 'C5', 'C3', 'C1', 'Cz',
        'C2', 'C4', 'C6', 'CP5', 'CP3', 'CP1', 'CPz', 'CP2', 'CP4', 'CP6', 'Pz'
    ])
    test_cnt, test_cnt.info['events'] = test_cnt.copy().resample(
        250, npad='auto', events=test_cnt.info['events'])

    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(a,
                               low_cut_hz,
                               high_cut_hz,
                               test_cnt.info['sfreq'],
                               filt_order=3,
                               axis=1), test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(a.T,
                                                  factor_new=factor_new,
                                                  init_block_size=
                                                  init_block_size,
                                                  eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Right Hand', [1]), ('Left Hand', [2])])

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=1 -
                                               valid_set_fraction)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 2
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or([
        MaxEpochs(max_epochs),
        NoDecrease('valid_misclass', max_increase_epochs)
    ])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
Пример #26
0
outpath = args.outpath
fold = args.fold
assert (fold >= 0 and fold < 54)
# Randomly shuffled subject.
subjs = [
    35, 47, 46, 37, 13, 27, 12, 32, 53, 54, 4, 40, 19, 41, 18, 42, 34, 7, 49,
    9, 5, 48, 29, 15, 21, 17, 31, 45, 1, 38, 51, 8, 11, 16, 28, 44, 24, 52, 3,
    26, 39, 50, 6, 23, 2, 14, 25, 20, 10, 33, 22, 43, 36, 30
]
test_subj = subjs[fold]
cv_set = np.array(subjs[fold + 1:] + subjs[:fold])
kf = KFold(n_splits=6)

dfile = h5py.File(datapath, 'r')
torch.cuda.set_device(args.gpu)
set_random_seeds(seed=20200205, cuda=True)
BATCH_SIZE = 16
TRAIN_EPOCH = 200  # consider 200 for early stopping

# Get data from single subject.


def get_data(subj):
    dpath = '/s' + str(subj)
    X = dfile[pjoin(dpath, 'X')]
    Y = dfile[pjoin(dpath, 'Y')]
    return X, Y


def get_multi_data(subjs):
    Xs = []
Пример #27
0
global_vars.set('dataset', dataset)
set_params_by_dataset()
global_vars.set('cuda', True)
model_select = 'deep4'
model_dir = '143_x_evolution_layers_cross_subject'
model_name = 'best_model_9_8_6_7_2_1_3_4_5.th'
train_set = {}
val_set = {}
test_set = {}
train_set[subject_id], val_set[subject_id], test_set[subject_id] =\
            get_train_val_test(data_folder, subject_id)

# Set if you want to use GPU
# You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
cuda = True
set_random_seeds(seed=20170629, cuda=cuda)

# This will determine how many crops are processed in parallel
input_time_length = 450
# final_conv_length determines the size of the receptive field of the ConvNet
models = {
    'evolution': torch.load(f'../models/{model_dir}/{model_name}'),
    'deep4': target_model('deep')
}
model = models[model_select]
input_time_length = global_vars.get('input_time_len')
stop_criterion, iterator, loss_function, monitors = get_normal_settings()
naiveNAS = NaiveNAS(iterator=iterator,
                    exp_folder=None,
                    exp_name=None,
                    train_set=train_set,
Пример #28
0
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda):
    train_filename = 'A{:02d}T.gdf'.format(subject_id)
    test_filename = 'A{:02d}E.gdf'.format(subject_id)
    train_filepath = os.path.join(data_folder, train_filename)
    test_filepath = os.path.join(data_folder, test_filename)
    train_label_filepath = train_filepath.replace('.gdf', '.mat')
    test_label_filepath = test_filepath.replace('.gdf', '.mat')

    train_loader = BCICompetition4Set2A(train_filepath,
                                        labels_filename=train_label_filepath)
    test_loader = BCICompetition4Set2A(test_filepath,
                                       labels_filename=test_label_filepath)
    train_cnt = train_loader.load()
    test_cnt = test_loader.load()

    # Preprocessing

    train_cnt = train_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(train_cnt.ch_names) == 22
    # lets convert to millvolt for numerical stability of next operations
    train_cnt = mne_apply(lambda a: a * 1e6, train_cnt)
    train_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a, low_cut_hz, 38, train_cnt.info['sfreq'], filt_order=3, axis=1),
        train_cnt)
    train_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, train_cnt)

    test_cnt = test_cnt.drop_channels(
        ['STI 014', 'EOG-left', 'EOG-central', 'EOG-right'])
    assert len(test_cnt.ch_names) == 22
    test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
    test_cnt = mne_apply(
        lambda a: bandpass_cnt(
            a, low_cut_hz, 38, test_cnt.info['sfreq'], filt_order=3, axis=1),
        test_cnt)
    test_cnt = mne_apply(
        lambda a: exponential_running_standardize(
            a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, test_cnt)

    marker_def = OrderedDict([('Left Hand', [1]), (
        'Right Hand',
        [2],
    ), ('Foot', [3]), ('Tongue', [4])])
    ival = [-500, 4000]

    train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
    test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)

    train_set, valid_set = split_into_two_sets(train_set,
                                               first_set_fraction=0.8)

    set_random_seeds(seed=20190706, cuda=cuda)

    n_classes = 4
    n_chans = int(train_set.X.shape[1])
    input_time_length = train_set.X.shape[2]
    if model == 'shallow':
        model = ShallowFBCSPNet(n_chans,
                                n_classes,
                                input_time_length=input_time_length,
                                final_conv_length='auto').create_network()
    elif model == 'deep':
        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         final_conv_length='auto').create_network()
    if cuda:
        model.cuda()
    log.info("Model: \n{:s}".format(str(model)))

    optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=60)

    stop_criterion = Or([MaxEpochs(1600), NoDecrease('valid_misclass', 160)])

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(model,
                     train_set,
                     valid_set,
                     test_set,
                     iterator=iterator,
                     loss_function=F.nll_loss,
                     optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True,
                     cuda=cuda)
    exp.run()
    return exp
def run_exp(test_on_eval, sensor_types, n_chans, max_recording_mins,
            test_recording_mins, n_recordings, sec_to_cut_at_start,
            sec_to_cut_at_end, duration_recording_mins, max_abs_val,
            clip_before_resample, sampling_freq, divisor, n_folds, i_test_fold,
            shuffle, merge_train_valid, model_name, n_start_chans,
            n_chan_factor, input_time_length, final_conv_length,
            stride_before_pool, optimizer, learning_rate, weight_decay,
            scheduler, model_constraint, batch_size, max_epochs, log_dir,
            only_return_exp, np_th_seed):

    cuda = True
    if ('smac' in model_name) and (input_time_length is None):
        input_time_length = 12000
        fix_input_length_for_smac = True
    else:
        fix_input_length_for_smac = False
    set_random_seeds(seed=np_th_seed, cuda=cuda)
    n_classes = 2
    if model_name == 'shallow':
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length).create_network()
    elif model_name == 'deep':
        model = Deep4Net(
            n_chans,
            n_classes,
            n_filters_time=n_start_chans,
            n_filters_spat=n_start_chans,
            input_time_length=input_time_length,
            n_filters_2=int(n_start_chans * n_chan_factor),
            n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
            n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
            final_conv_length=final_conv_length,
            stride_before_pool=stride_before_pool).create_network()
    elif (model_name == 'deep_smac') or (model_name == 'deep_smac_bnorm'):
        if model_name == 'deep_smac':
            do_batch_norm = False
        else:
            assert model_name == 'deep_smac_bnorm'
            do_batch_norm = True
        double_time_convs = False
        drop_prob = 0.244445
        filter_length_2 = 12
        filter_length_3 = 14
        filter_length_4 = 12
        filter_time_length = 21
        final_conv_length = 1
        first_nonlin = elu
        first_pool_mode = 'mean'
        first_pool_nonlin = identity
        later_nonlin = elu
        later_pool_mode = 'mean'
        later_pool_nonlin = identity
        n_filters_factor = 1.679066
        n_filters_start = 32
        pool_time_length = 1
        pool_time_stride = 2
        split_first_layer = True
        n_chan_factor = n_filters_factor
        n_start_chans = n_filters_start
        model = Deep4Net(n_chans,
                         n_classes,
                         n_filters_time=n_start_chans,
                         n_filters_spat=n_start_chans,
                         input_time_length=input_time_length,
                         n_filters_2=int(n_start_chans * n_chan_factor),
                         n_filters_3=int(n_start_chans * (n_chan_factor**2.0)),
                         n_filters_4=int(n_start_chans * (n_chan_factor**3.0)),
                         final_conv_length=final_conv_length,
                         batch_norm=do_batch_norm,
                         double_time_convs=double_time_convs,
                         drop_prob=drop_prob,
                         filter_length_2=filter_length_2,
                         filter_length_3=filter_length_3,
                         filter_length_4=filter_length_4,
                         filter_time_length=filter_time_length,
                         first_nonlin=first_nonlin,
                         first_pool_mode=first_pool_mode,
                         first_pool_nonlin=first_pool_nonlin,
                         later_nonlin=later_nonlin,
                         later_pool_mode=later_pool_mode,
                         later_pool_nonlin=later_pool_nonlin,
                         pool_time_length=pool_time_length,
                         pool_time_stride=pool_time_stride,
                         split_first_layer=split_first_layer,
                         stride_before_pool=True).create_network()
    elif model_name == 'shallow_smac':
        conv_nonlin = identity
        do_batch_norm = True
        drop_prob = 0.328794
        filter_time_length = 56
        final_conv_length = 22
        n_filters_spat = 73
        n_filters_time = 24
        pool_mode = 'max'
        pool_nonlin = identity
        pool_time_length = 84
        pool_time_stride = 3
        split_first_layer = True
        model = ShallowFBCSPNet(
            in_chans=n_chans,
            n_classes=n_classes,
            n_filters_time=n_filters_time,
            n_filters_spat=n_filters_spat,
            input_time_length=input_time_length,
            final_conv_length=final_conv_length,
            conv_nonlin=conv_nonlin,
            batch_norm=do_batch_norm,
            drop_prob=drop_prob,
            filter_time_length=filter_time_length,
            pool_mode=pool_mode,
            pool_nonlin=pool_nonlin,
            pool_time_length=pool_time_length,
            pool_time_stride=pool_time_stride,
            split_first_layer=split_first_layer,
        ).create_network()
    elif model_name == 'deep_smac_new':
        from torch.nn.functional import elu, relu, relu6, tanh
        from braindecode.torch_ext.functions import identity, square, safe_log
        n_filters_factor = 1.9532637176784269
        n_filters_start = 61

        deep_kwargs = {
            "batch_norm": False,
            "double_time_convs": False,
            "drop_prob": 0.3622676569047184,
            "filter_length_2": 9,
            "filter_length_3": 6,
            "filter_length_4": 10,
            "filter_time_length": 17,
            "final_conv_length": 5,
            "first_nonlin": elu,
            "first_pool_mode": "max",
            "first_pool_nonlin": identity,
            "later_nonlin": relu6,
            "later_pool_mode": "max",
            "later_pool_nonlin": identity,
            "n_filters_time": n_filters_start,
            "n_filters_spat": n_filters_start,
            "n_filters_2": int(n_filters_start * n_filters_factor),
            "n_filters_3": int(n_filters_start * (n_filters_factor**2.0)),
            "n_filters_4": int(n_filters_start * (n_filters_factor**3.0)),
            "pool_time_length": 1,
            "pool_time_stride": 4,
            "split_first_layer": True,
            "stride_before_pool": True,
        }

        model = Deep4Net(n_chans,
                         n_classes,
                         input_time_length=input_time_length,
                         **deep_kwargs).create_network()
    elif model_name == 'shallow_smac_new':
        from torch.nn.functional import elu, relu, relu6, tanh
        from braindecode.torch_ext.functions import identity, square, safe_log
        shallow_kwargs = {
            "conv_nonlin": square,
            "batch_norm": True,
            "drop_prob": 0.10198630723385381,
            "filter_time_length": 51,
            "final_conv_length": 1,
            "n_filters_spat": 200,
            "n_filters_time": 76,
            "pool_mode": "max",
            "pool_nonlin": safe_log,
            "pool_time_length": 139,
            "pool_time_stride": 49,
            "split_first_layer": True,
        }

        model = ShallowFBCSPNet(in_chans=n_chans,
                                n_classes=n_classes,
                                input_time_length=input_time_length,
                                **shallow_kwargs).create_network()
    elif model_name == 'linear':
        model = nn.Sequential()
        model.add_module("conv_classifier",
                         nn.Conv2d(n_chans, n_classes, (600, 1)))
        model.add_module('softmax', nn.LogSoftmax())
        model.add_module('squeeze', Expression(lambda x: x.squeeze(3)))
    elif model_name == '3path':
        virtual_chan_1x1_conv = True
        mean_across_features = False
        drop_prob = 0.5
        n_start_filters = 10
        early_bnorm = False
        n_classifier_filters = 100
        later_kernel_len = 5
        extra_conv_stride = 4
        # dont forget to reset n_preds_per_blabla
        model = create_multi_start_path_net(
            in_chans=n_chans,
            virtual_chan_1x1_conv=virtual_chan_1x1_conv,
            n_start_filters=n_start_filters,
            early_bnorm=early_bnorm,
            later_kernel_len=later_kernel_len,
            extra_conv_stride=extra_conv_stride,
            mean_across_features=mean_across_features,
            n_classifier_filters=n_classifier_filters,
            drop_prob=drop_prob)
    else:
        assert False, "unknown model name {:s}".format(model_name)
    if not model_name == '3path':
        to_dense_prediction_model(model)
    log.info("Model:\n{:s}".format(str(model)))
    time_cut_off_sec = np.inf
    start_time = time.time()

    # fix input time length in case of smac models
    if fix_input_length_for_smac:
        assert ('smac' in model_name) and (input_time_length == 12000)
        if cuda:
            model.cuda()
        test_input = np_to_var(
            np.ones((2, n_chans, input_time_length, 1), dtype=np.float32))
        if cuda:
            test_input = test_input.cuda()
        try:
            out = model(test_input)
        except:
            raise ValueError("Model receptive field too large...")
        n_preds_per_input = out.cpu().data.numpy().shape[2]
        n_receptive_field = input_time_length - n_preds_per_input
        input_time_length = 2 * n_receptive_field

    exp = common.run_exp(
        max_recording_mins,
        n_recordings,
        sec_to_cut_at_start,
        sec_to_cut_at_end,
        duration_recording_mins,
        max_abs_val,
        clip_before_resample,
        sampling_freq,
        divisor,
        n_folds,
        i_test_fold,
        shuffle,
        merge_train_valid,
        model,
        input_time_length,
        optimizer,
        learning_rate,
        weight_decay,
        scheduler,
        model_constraint,
        batch_size,
        max_epochs,
        only_return_exp,
        time_cut_off_sec,
        start_time,
        test_on_eval,
        test_recording_mins,
        sensor_types,
        log_dir,
        np_th_seed,
    )

    return exp
Пример #30
0
def network_model(subject_id, model_type, data_type, cropped, cuda, parameters, hyp_params):
	best_params = dict() # dictionary to store hyper-parameter values

	#####Parameter passed to funciton#####
	max_epochs  = parameters['max_epochs']
	max_increase_epochs = parameters['max_increase_epochs']
	batch_size = parameters['batch_size']

	#####Constant Parameters#####
	best_loss = 100.0 # instatiate starting point for loss
	iterator = BalancedBatchSizeIterator(batch_size=batch_size)
	stop_criterion = Or([MaxEpochs(max_epochs),
						 NoDecrease('valid_misclass', max_increase_epochs)])
	monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]
	model_constraint = MaxNormDefaultConstraint()
	epoch = 4096

	#####Collect and format data#####
	if data_type == 'words':
		data, labels = format_data(data_type, subject_id, epoch)
		data = data[:,:,768:1280] # within-trial window selected for classification
	elif data_type == 'vowels':
		data, labels = format_data(data_type, subject_id, epoch)
		data = data[:,:,512:1024]
	elif data_type == 'all_classes':
		data, labels = format_data(data_type, subject_id, epoch)
		data = data[:,:,768:1280]
	
	x = lambda a: a * 1e6 # improves numerical stability
	data = x(data)
	
	data = normalize(data)
	data, labels = balanced_subsample(data, labels) # downsampling the data to ensure equal classes
	data, _, labels, _ = train_test_split(data, labels, test_size=0, random_state=42) # redundant shuffle of data/labels

	#####model inputs#####
	unique, counts = np.unique(labels, return_counts=True)
	n_classes = len(unique)
	n_chans   = int(data.shape[1])
	input_time_length = data.shape[2]

	#####k-fold nested corss-validation#####
	num_folds = 4
	skf = StratifiedKFold(n_splits=num_folds, shuffle=True, random_state=10)
	out_fold_num = 0 # outer-fold number
	
	cv_scores = []
	#####Outer=Fold#####
	for inner_ind, outer_index in skf.split(data, labels):
		inner_fold, outer_fold     = data[inner_ind], data[outer_index]
		inner_labels, outer_labels = labels[inner_ind], labels[outer_index]
		out_fold_num += 1
		 # list for storing cross-validated scores
		loss_with_params = dict()# for storing param values and losses
		in_fold_num = 0 # inner-fold number
		
		#####Inner-Fold#####
		for train_idx, valid_idx in skf.split(inner_fold, inner_labels):
			X_Train, X_val = inner_fold[train_idx], inner_fold[valid_idx]
			y_train, y_val = inner_labels[train_idx], inner_labels[valid_idx]
			in_fold_num += 1
			train_set = SignalAndTarget(X_Train, y_train)
			valid_set = SignalAndTarget(X_val, y_val)
			loss_with_params[f"Fold_{in_fold_num}"] = dict()
			
			####Nested cross-validation#####
			for drop_prob in hyp_params['drop_prob']:
				for loss_function in hyp_params['loss']:
					for i in range(len(hyp_params['lr_adam'])):
						model = None # ensure no duplication of models
						# model, learning-rate and optimizer setup according to model_type
						if model_type == 'shallow':
							model =  ShallowFBCSPNet(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
										 n_filters_time=80, filter_time_length=40, n_filters_spat=80, 
										 pool_time_length=75, pool_time_stride=25, final_conv_length='auto',
										 conv_nonlin=square, pool_mode='max', pool_nonlin=safe_log, 
										 split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1,
										 drop_prob=drop_prob).create_network()
							lr = hyp_params['lr_ada'][i]
							optimizer = optim.Adadelta(model.parameters(), lr=lr, rho=0.9, weight_decay=0.1, eps=1e-8)
						elif model_type == 'deep':
							model = Deep4Net(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
										 final_conv_length='auto', n_filters_time=20, n_filters_spat=20, filter_time_length=10,
										 pool_time_length=3, pool_time_stride=3, n_filters_2=50, filter_length_2=15,
										 n_filters_3=100, filter_length_3=15, n_filters_4=400, filter_length_4=10,
										 first_nonlin=leaky_relu, first_pool_mode='max', first_pool_nonlin=safe_log, later_nonlin=leaky_relu,
										 later_pool_mode='max', later_pool_nonlin=safe_log, drop_prob=drop_prob, 
										 double_time_convs=False, split_first_layer=False, batch_norm=True, batch_norm_alpha=0.1,
										 stride_before_pool=False).create_network() #filter_length_4 changed from 15 to 10
							lr = hyp_params['lr_ada'][i]
							optimizer = optim.Adadelta(model.parameters(), lr=lr, weight_decay=0.1, eps=1e-8)
						elif model_type == 'eegnet':
							model = EEGNetv4(in_chans=n_chans, n_classes=n_classes, final_conv_length='auto', 
										 input_time_length=input_time_length, pool_mode='mean', F1=16, D=2, F2=32,
										 kernel_length=64, third_kernel_size=(8,4), drop_prob=drop_prob).create_network()
							lr = hyp_params['lr_adam'][i]
							optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0, eps=1e-8, amsgrad=False)
						
						set_random_seeds(seed=20190629, cuda=cuda)
						
						if cuda:
							model.cuda()
							torch.backends.cudnn.deterministic = True
						model = torch.nn.DataParallel(model)
						log.info("%s model: ".format(str(model)))

						loss_function = loss_function
						model_loss_function = None

						#####Setup to run the selected model#####
						model_test = Experiment(model, train_set, valid_set, test_set=None, iterator=iterator,
												loss_function=loss_function, optimizer=optimizer,
												model_constraint=model_constraint, monitors=monitors,
												stop_criterion=stop_criterion, remember_best_column='valid_misclass',
												run_after_early_stop=True, model_loss_function=model_loss_function, cuda=cuda,
												data_type=data_type, subject_id=subject_id, model_type=model_type, 
												cropped=cropped, model_number=str(out_fold_num)) 

						model_test.run()
						model_loss = model_test.epochs_df['valid_loss'].astype('float')
						current_val_loss = current_loss(model_loss)
						loss_with_params[f"Fold_{in_fold_num}"][f"{drop_prob}/{loss_function}/{lr}"] = current_val_loss

		####Select and train optimized model#####
		df = pd.DataFrame(loss_with_params)
		df['mean'] = df.mean(axis=1) # compute mean loss across k-folds
		writer_df = f"results_folder\\results\\S{subject_id}\\{model_type}_parameters.xlsx"
		df.to_excel(writer_df)
		
		best_dp, best_loss, best_lr = df.loc[df['mean'].idxmin()].__dict__['_name'].split("/") # extract best param values
		if str(best_loss[10:13]) == 'nll':
			best_loss = F.nll_loss
		elif str(best_loss[10:13]) == 'cro':
			best_loss = F.cross_entropy
		
		print(f"Best parameters: dropout: {best_dp}, loss: {str(best_loss)[10:13]}, lr: {best_lr}")

		#####Train model on entire inner fold set#####
		torch.backends.cudnn.deterministic = True
		model = None
		#####Create outer-fold validation and test sets#####
		X_valid, X_test, y_valid, y_test = train_test_split(outer_fold, outer_labels, test_size=0.5, random_state=42, stratify=outer_labels)
		train_set = SignalAndTarget(inner_fold, inner_labels)
		valid_set = SignalAndTarget(X_valid, y_valid)
		test_set  = SignalAndTarget(X_test, y_test)


		if model_type == 'shallow':
			model =  ShallowFBCSPNet(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
						 n_filters_time=60, filter_time_length=5, n_filters_spat=40, 
						 pool_time_length=50, pool_time_stride=15, final_conv_length='auto',
						 conv_nonlin=relu6, pool_mode='mean', pool_nonlin=safe_log, 
						 split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1,
						 drop_prob=0.1).create_network() #50 works better than 75
			
			optimizer = optim.Adadelta(model.parameters(), lr=2.0, rho=0.9, weight_decay=0.1, eps=1e-8) 
			
		elif model_type == 'deep':
			model = Deep4Net(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length,
						 final_conv_length='auto', n_filters_time=20, n_filters_spat=20, filter_time_length=5,
						 pool_time_length=3, pool_time_stride=3, n_filters_2=20, filter_length_2=5,
						 n_filters_3=40, filter_length_3=5, n_filters_4=1500, filter_length_4=10,
						 first_nonlin=leaky_relu, first_pool_mode='mean', first_pool_nonlin=safe_log, later_nonlin=leaky_relu,
						 later_pool_mode='mean', later_pool_nonlin=safe_log, drop_prob=0.1, 
						 double_time_convs=False, split_first_layer=True, batch_norm=True, batch_norm_alpha=0.1,
						 stride_before_pool=False).create_network()
			
			optimizer = AdamW(model.parameters(), lr=0.1, weight_decay=0)
		elif model_type == 'eegnet':
			model = EEGNetv4(in_chans=n_chans, n_classes=n_classes, final_conv_length='auto', 
						 input_time_length=input_time_length, pool_mode='mean', F1=16, D=2, F2=32,
						 kernel_length=64, third_kernel_size=(8,4), drop_prob=0.1).create_network()
			optimizer = optim.Adam(model.parameters(), lr=0.1, weight_decay=0, eps=1e-8, amsgrad=False) 
			

		if cuda:
			model.cuda()
			torch.backends.cudnn.deterministic = True
			#model = torch.nn.DataParallel(model)
		
		log.info("Optimized model")
		model_loss_function=None
		
		#####Setup to run the optimized model#####
		optimized_model = op_exp(model, train_set, valid_set, test_set=test_set, iterator=iterator,
								loss_function=best_loss, optimizer=optimizer,
								model_constraint=model_constraint, monitors=monitors,
								stop_criterion=stop_criterion, remember_best_column='valid_misclass',
								run_after_early_stop=True, model_loss_function=model_loss_function, cuda=cuda,
								data_type=data_type, subject_id=subject_id, model_type=model_type, 
								cropped=cropped, model_number=str(out_fold_num))
		optimized_model.run()

		log.info("Last 5 epochs")
		log.info("\n" + str(optimized_model.epochs_df.iloc[-5:]))
		
		writer = f"results_folder\\results\\S{subject_id}\\{data_type}_{model_type}_{str(out_fold_num)}.xlsx"
		optimized_model.epochs_df.iloc[-30:].to_excel(writer)

		accuracy = 1 - np.min(np.array(optimized_model.class_acc))
		cv_scores.append(accuracy) # k accuracy scores for this param set. 
		
	#####Print and store fold accuracies and mean accuracy#####
	
	print(f"Class Accuracy: {np.mean(np.array(cv_scores))}")
	results_df = pd.DataFrame(dict(cv_scores=cv_scores,
								   cv_mean=np.mean(np.array(cv_scores))))

	writer2 = f"results_folder\\results\\S{subject_id}\\{data_type}_{model_type}_cvscores.xlsx"
	results_df.to_excel(writer2)
	return optimized_model, np.mean(np.array(cv_scores))