Пример #1
0
def dummy_test(infile, expfile):

    # load input test data
    ifile = open(infile, "br")
    idic = pickle.load(ifile)
    ifile.close()

    surf = {}

    if "tri" in idic.keys():
        surf["tri"] = idic["tri"]

    if "lat" in idic.keys():
        surf["lat"] = idic["lat"]

    # run mesh_edges
    out_edge = mesh_edges(surf)

    # load expected outout data
    efile = open(expfile, "br")
    expdic = pickle.load(efile)
    efile.close()
    exp_edge = expdic["edg"]

    testout = []

    comp = np.allclose(out_edge, exp_edge, rtol=1e-05, equal_nan=True)
    testout.append(comp)

    assert all(flag == True for (flag) in testout)
Пример #2
0
def test_nifti_input():
    nifti = nib.load(
        tflow.get("MNI152Lin", resolution="02", desc="brain", suffix="mask"))
    edg = mesh_edges(nifti)

    assert edg.shape[1] == 2
    assert np.amax(edg) <= nifti.get_data().sum() - 1
Пример #3
0
def get_meshedge_output(surf, foutname):
    """Runs mesh_edges and returns all relevant output."""

    # run mesh_edges
    surf_out = {}
    surf_out["edg"] = mesh_edges(surf)

    with open(foutname, "wb") as handle:
        pickle.dump(surf_out, handle, protocol=4)  #

    return
Пример #4
0
    def _unmask(self) -> None:
        """Changes all masked parameters to their input dimensions."""
        simple_unmask_parameters = ["t", "coef", "SSE", "r", "ef", "sd", "dfs"]
        for key in simple_unmask_parameters:
            attr = getattr(self, key)
            if attr is not None:
                setattr(self, key, undo_mask(attr, self.mask, axis=1))

        # slm.resl unmask
        if self.resl is not None:
            edges = mesh_edges(self.surf)
            _, idx = _mask_edges(edges, self.mask)
            self.resl = undo_mask(self.resl, idx, axis=0)
Пример #5
0
def generate_test_data():
    np.random.seed(0)

    # generate the parameters
    tri = np.random.randint(1, int(50), size=(100, 3))
    coord = np.random.rand(3, 50)
    edg = mesh_edges({"tri": tri})
    n_edges = edg.shape[0]
    n_vertices = int(tri.shape[0])
    cluster_threshold = np.random.rand()
    mygrid = [
        {
            "num_t": [1, 2, 3],
            "k": [1, 2, 3],
            "df": [1, [1, 1]],
            "mask": [False, True],
            "reselspvert": [None, True],
        },
    ]
    myparamgrid = ParameterGrid(mygrid)

    # Generate data.
    test_num = 0
    for params in myparamgrid:
        I = {
            "tri": tri,
            "edg": edg,
            "thresh": cluster_threshold,
            "t": np.random.random_sample((params["num_t"], n_vertices)),
            "resl": np.random.random_sample((n_edges, 1)),
            "k": params["k"],
            "df": params["df"],
            "coord": coord,
        }

        if params["mask"] is True:
            I["mask"] = np.random.choice(a=[False, True], size=(n_vertices))
        else:
            I["mask"] = np.ones((n_vertices), dtype=bool)

        if params["reselspvert"] is True:
            I["reselspvert"] = np.random.rand(n_vertices)
        else:
            I["reselspvert"] = None

        # Here we go: generate slm & run peak_clus & save in-out
        slm = generate_random_slm(I)
        D = generate_peak_clus_out(slm, I)
        test_num += 1
        params2files(I, D, test_num)
Пример #6
0
def _compute_resls(self, Y):
    """Computes the sum over observations of squares of differences of
    normalized residuals along each edge.

    Parameters
    ----------
    Y : numpy.array
        Response variable residual matrix.

    Returns
    -------
    numpy.array
        Sum over observations of squares of differences of normalized residuals
        along each edge.
    dict
        Dictionary containing the mesh connections in either triangle or lattice
        format. The dictionary's sole key is 'tri' for triangle connections or
        'lat' for lattice connections.
    """
    if isinstance(self.surf, BSPolyData):
        mesh_connections = {"tri": np.array(get_cells(self.surf)) + 1}
    else:
        key = "tri" if "tri" in self.surf else "lat"
        mesh_connections = {key: self.surf[key]}

    edges = mesh_edges(self.surf, self.mask)

    n_edges = edges.shape[0]

    Y = np.atleast_3d(Y)
    resl = np.zeros((n_edges, Y.shape[2]))

    for j in range(Y.shape[2]):
        normr = np.sqrt(self.SSE[((j + 1) * (j + 2) // 2) - 1])
        for i in range(Y.shape[0]):
            u = Y[i, :, j] / normr
            resl[:, j] += np.diff(u[edges], axis=1).ravel()**2

    return resl, mesh_connections