Пример #1
0
 def _orient(self, proc):
     old = getattr(proc.signature['input_spm_orientation'], 'lastInput',
                   None)
     if self.input is None or old is None \
         or old.fullPath() != self.input.fullPath() \
             or proc.isDefault('input_spm_orientation'):
         hide = 1
         res = 'Not applicable'
         if self.input is not None:
             if self.input.format in list(
                     map(getFormat, ('SPM image', 'Series of SPM image'))):
                 hide = 0
                 atts = aimsGlobals.aimsVolumeAttributes(self.input)
                 tr = atts.get('storage_to_memory')
                 if tr is not None and tr[0] < 0:
                     res = 'Neurological'
                 else:
                     res = 'Radiological'
         if hide:
             proc.signature['input_spm_orientation'].setChoices(
                 'Not applicable')
         else:
             proc.signature['input_spm_orientation'].setChoices(
                 'Neurological', 'Radiological')
     else:
         res = self.input_spm_orientation
     proc.signature['input_spm_orientation'].lastInput = self.input
     return res
Пример #2
0
def execution(self, context):
    # context.write( 'encoder:', self.encoder )
    attrs = aimsGlobals.aimsVolumeAttributes(self.images[0], forceFormat=1)
    width = attrs['volume_dimension'][0]

    mod16 = width % 16
    if mod16:
        raise RuntimeError(_t_('Image width must be a multiple of 16. Actual '
                               'width is %d, closest good values are %d and '
                               '%d.') %
                           (width, width - mod16, width + 16 - mod16))
        return
    size = str( attrs[ 'volume_dimension' ][ 0 ] ) + 'x' \
        + str(attrs['volume_dimension'][1])
    dir = context.temporary('Directory')
    yuvImage = os.path.join(dir.fullPath(), 'yuvImage.yuv')
    yuvImages = os.path.join(dir.fullPath(), 'yuvImages.yuv')
    for image in self.images:
        context.system('convert', image.fullPath(), yuvImage, outputLevel=-1)
        # for n in six.moves.xrange( self.frameRepetition ):
        context.system('cat "' + yuvImage + '" >> "' + yuvImages + '"',
                       outputLevel=-1)
    cmd = ['recmpeg', '-P', self.encoding, '--coding', self.coding,
           '--quality', self.quality, '--fps', self.framesPerSecond,
           '--picture', size] + self.additional_encoder_options \
        + [self.animation.fullPath(), yuvImages]
    context.system(*cmd)
Пример #3
0
 def _orient(self, proc):
     old = getattr(proc.signature['input_spm_orientation'], 'lastInput',
                   None)
     if self.input is None \
         or old is None \
         or old.fullPath() != self.input.fullPath() \
         or proc.isDefault('input_spm_orientation'):
         hide = 1
         res = 'Not applicable'
         if self.input is not None:
             if self.input.format in list(
                     map(getFormat, ('SPM image', 'Series of SPM image'))):
                 hide = 0
                 inputAtts = aimsGlobals.aimsVolumeAttributes(self.input)
                 radio = isRadio(inputAtts)
                 if radio is not None and radio != 0:
                     res = 'Radiological'
                 else:
                     res = 'Neurological'
         if hide:
             proc.signature['input_spm_orientation'].setChoices(
                 'Not applicable')
         else:
             proc.signature['input_spm_orientation'].setChoices(
                 'Neurological', 'Radiological')
     else:
         # print 'using old value:', old, self.input_spm_orientation
         res = None
     proc.signature['input_spm_orientation'].lastInput = self.input
     return res
Пример #4
0
def execution(self, context):
    convert = 0
    command = ['AimsFileConvert', '-i', '', '-o', '']
    if self.ascii:
        convert = 1
        command += ['-a']
    if self.voxelType is not None:
        convert = 1
        command += ['-t', self.voxelType]

    voldim = aimsGlobals.aimsVolumeAttributes(
        self.read).get('volume_dimension')
    time_length = voldim[3]
    name_serie = self.write.get('name_serie')
    if name_serie:
        if len(name_serie) != time_length:
            raise ValueError(
                _t_('<em>write</em> parameter must have <em>%d</em> files') % (time_length, ))
    else:
        nb_digit = len(str(time_length))
        if nb_digit < 4:  # nb_digit for the serie zeros are added at the beginning of the number that doesn't have enough digits
            nb_digit = 4
        for n in range(time_length):
            n = str(n)
            while len(n) < nb_digit:
                n = "0" + n
            name_serie.append(n)
        # name_serie = [str(x) for x in range(time_length)]

    self.write._setLocal('name_serie', name_serie)

    command = [ 'AimsSubVolume', '--singleminf', '-i', self.read, '-o'] + \
        self.write.firstFullPathsOfEachSeries() + \
        [ '-t' ] + list(range( len( name_serie ))) + \
        ['-T'] + list(range(len(name_serie)))

    if context.system(*command):
        raise Exception(_t_('Error while splitting <em>%s</em>') %
                        (self.read.fullPath(), ))
    if convert:
        for f in self.write.firstFullPathsOfEachSeries():
            command[2] = f
            command[4] = f
            if context.system(*command):
                raise Exception(_t_('Error while converting <em>%s</em> to <em>%s</em>') %
                                (command[2], command[4]))

    if self.removeSource:
        for f in self.read.fullPaths():
            shelltools.rm(f)
Пример #5
0
def execution(self, context):
    filetype = self.read.type
    if filetype is getDiskItemType( 'SPM99 normalization matrix' ) \
       or self.read.fullName()[-5:] == '_sn3d':
        spm2 = 0
    else:
        spm2 = 1

    AtoT = aims.readSpmNormalization(self.read.fullPath(),
                                     self.source_volume.fullPath())
    srcref = None
    h = AtoT.header()
    if 'source_referential' in h:
        srcref = h['source_referential']
    tm = registration.getTransformationManager()

    if self.target != 'normalized_volume in AIMS orientation':
        aims.write(AtoT, self.write.fullPath())
        if self.target == 'MNI template':
            destref = tm.referential(registration.talairachMNIReferentialId)
        else:
            destref = None

    else:  # normalized_volume in AIMS orientation

        nim = self.normalized_volume
        if not nim or not nim.isReadable():
            raise RuntimeError(
                _t_('normalized_volume shoud be specified when using this target mode'
                    ))
        context.write('use normalized image:', nim.fullPath(), '\n')
        hasnorm = 1
        attrs = shfjGlobals.aimsVolumeAttributes(nim)
        t1 = aims.Motion(attrs['transformations'][-1])
        AIMS = t1.inverse() * AtoT
        AIMS.header().update(AtoT.header())
        destref = tm.referential(nim)
        aims.write(AIMS, self.write.fullPath())

    if srcref or destref:
        tm.setNewTransformationInfo(self.write, srcref, destref)

    if self.removeSource:
        for f in self.read.fullPaths():
            os.unlink(f)
Пример #6
0
def execution(self, context):
    # Read header information
    atts = aimsGlobals.aimsVolumeAttributes(self.volume_input)
    ref = atts['referentials']
    trf = atts['transformations']
    if ("Scanner-based anatomical coordinates" in ref):
        trm_to_scannerBased = trf[
            ref.index("Scanner-based anatomical coordinates")]

    # Create a referential for Scanner-based
    tm = registration.getTransformationManager()
    dest = tm.referential(self.new_referential)
    context.write('dest:', dest)
    if dest is None:
        dest = tm.createNewReferentialFor(
            self.new_referential, referentialType='Scanner Based Referential')

    # Create a new referential if needed for the volume

    # src = tm.referential( self.volume_input )
    # print "Attributes"
    # print self.volume_input.hierarchyAttributes()
    # if src is None:
        # print "create src"
        # src = tm.createNewReferentialFor(self.volume_input)
        # print "apres"
        # print src

    src = tm.referential(self.referential_volume_input)
    context.write('src:', src)
    # print "Attributes"
    # print self.volume_input.hierarchyAttributes()
    if src is None:
        src = tm.createNewReferentialFor(self.volume_input,
                                         referentialType='Referential of Raw T1 MRI',
                                         output_diskitem=self.referential_volume_input)
    dest.setMinf('direct_referential', 1, saveMinf=True)

    # Store information into the trm file
    mot = aims.Motion(trm_to_scannerBased)
    aims.write(mot, self.T1_TO_Scanner_Based.fullPath())

    # set and update database
    tm.setNewTransformationInfo(
        self.T1_TO_Scanner_Based, source_referential=src, destination_referential=dest)
Пример #7
0
def execution(self, context):
    # context.write( 'encoder:', self.encoder )
    attrs = aimsGlobals.aimsVolumeAttributes(self.images[0], forceFormat=1)
    width = attrs['volume_dimension'][0]

    tmpdi = context.temporary('File')
    tmp = tmpdi.fullPath()
    tfile = open(tmp, 'w')
    im = [x.fullPath() for x in self.images]
    tfile.write('\n'.join(im))
    tfile.write('\n')
    tfile.close()
    f = open(tmp)
    context.log('transcode input files', html=f.read())
    f.close()
    # os.system( 'cat ' + tmp )
    height = attrs['volume_dimension'][1]
    cmd = ['transcode', '-x', 'imlist,null', '-y', self.encoding + ',null',
           '-i', tmp, '-g', str(width) + 'x' + str(height), '-H', 0,
           '-o', self.animation.fullPath(), '-f', self.framesPerSecond] \
        + self.additional_encoder_options
    context.system(*cmd)
Пример #8
0
def execution(self, context):
    if len(self.images) == 0:
        raise RuntimeError('No image selected')
    context.write(self.images[0])
    attrs = aimsGlobals.aimsVolumeAttributes(self.images[0], forceFormat=1)
    context.write(attrs)
    width = attrs['volume_dimension'][0]

    im = [x.fullPath() for x in self.images]
    passlog = context.temporary('log file')
    cmd = ['mencoder', 'mf://' + ','.join(im),
           '-o', self.animation.fullPath(), '-mf',
           'fps=' + str(self.framesPerSecond), '-ovc', 'lavc',
           '-passlogfile', passlog, '-lavcopts',
           'vbitrate=' + str(self.quality * 10) + ':vcodec='
           + self.encoding + ':vpass=1'] + self.additional_encoder_options
    # print cmd
    context.system(*cmd)
    if self.passes > 1:
        cmd[-1] = cmd[-1][:-1] + '2'
        # print cmd
        context.system(*cmd)
Пример #9
0
def execution(self, context):
    if len(self.images) == 0:
        raise RuntimeError('No image selected')
    if 'ffmpeg' in mpegConfig.encoders:
        encoder = 'ffmpeg'
    else:
        encoder = 'avconv'

    attrs = aimsGlobals.aimsVolumeAttributes(self.images[0], forceFormat=1)
    # context.write( attrs )
    dims = attrs['volume_dimension']
    vs = attrs['voxel_size']
    width = float(dims[0] * vs[0])
    height = float(dims[1] * vs[1])
    aspect = width / height
    # bps = self.quality*10
    qscale = int((100 - self.quality) * 0.3 + 1)

    # determine filanemes pattern
    numre = re.compile('(.*[^0-9])([0-9]+)$')
    m = numre.match(os.path.basename(self.images[0].fullName()))
    pat = ''
    ext = self.images[0].fullPath()[len(self.images[0].fullName()):]
    if m:
        sp = m.span(2)
        dirn = os.path.dirname(self.images[0].fullName())
        pat = os.path.join(dirn,
                           m.group(1) + '%' + str(sp[1] - sp[0]) + 'd' + ext)
        # context.write( 'pattern: ', pat )
        for x in self.images[1:]:
            m2 = numre.match(os.path.basename(x.fullName()))
            if not m2 or m2.group(1) != m.group(1) or m2.span(2) != sp \
                    or os.path.basename(self.images[0].fullPath())[sp[1]:] \
                    != ext:
                pat = ''
                msg = _t_('ffmpeg/avconv can ony handle a series of homogen, '
                          'numbered image filenames. Image %s breaks the '
                          'rule') % x.fullPath()
                break

    if pat:
        # check if the pattern only includes theimages we want
        imnames = [os.path.basename(x.fullPath()) for x in self.images]
        # context.write( imnames )
        d = os.listdir(dirn)
        n = len(ext)
        for x in d:
            if x.endswith(ext) and x not in imnames:
                m2 = numre.match(os.path.basename(x[:-n]))
                if m2 and m2.group(1) == m.group(1) and m2.span(2) == sp:
                    pat = ''
                    msg = _t_('ffmpeg/avconv can ony handle a series of '
                              'homogen, numbered image filenames. There are '
                              'additional files in the images directory that '
                              'would interfere with the pattern: %s prevents '
                              'it from working') % x
                    break
    if pat:
        im = [pat]
    else:
        context.write(
            _t_('Images have to be copied for the following reason:') + '\n',
            msg)
        tmpdir = context.temporary('Directory')
        td = tmpdir.fullPath()
        inum = 0
        snum = int(math.ceil(math.log10(len(self.images) + 1)))
        for x in self.images:
            if not x.fullPath().endswith(ext):
                raise RuntimeError(
                    _t_('all images must have the same format:'
                        ' %s has not the expected extension %s') % x % ext)
            ofile = os.path.join(td, ('img%0' + str(snum) + 'd' + ext) % inum)
            if platform == 'windows':
                shutil.copyfile(x.fullPath(), ofile)
            else:
                # cheaper solution on unix
                os.symlink(x.fullPath(), ofile)
            inum += 1
        context.write('copy done')
        im = [os.path.join(td, 'img%' + str(snum) + 'd' + ext)]

    # im = [x.fullPath() for x in self.images]
    passlog = context.temporary('log file')
    cmd = [encoder]
    for x in im:
        cmd += ['-i', x]
    cmd += [
        '-r',
        str(self.framesPerSecond),
        # '-hq', # this options seems to have disapeared
        # '-b', str( bps ),
        '-qscale',
        str(qscale),
        '-aspect',
        str(aspect),
        '-vcodec',
        self.encoding
    ]
    if self.encoding == 'msmpeg4':
        # force to be readable by MS Media player
        # see http://ffmpeg.sourceforge.net/compat.php
        cmd += ['-vtag', 'MP43']
    cmd += ['-pass', '1',
            '-passlogfile', passlog] + self.additional_encoder_options \
        + [self.animation.fullPath()]
    context.write(cmd)
    if os.path.exists(self.animation.fullPath()):
        # ffmpeg doesn't overwrite existing files
        os.unlink(self.animation.fullPath())
    context.system(*cmd)
    if self.passes > 1:
        cmd[-4] = '2'
        # print cmd
        context.system(*cmd)
Пример #10
0
def execution(self, context):
    if self.input.format is not self.output.format:
        # Convert input to appropriate output format
        inp = self.input
        if inp.type is None \
                or inp.type == ReadDiskItem('Any Type', inp.format).type:
            # if the input type is not recognized (data not in database),
            # assume it is the same type as the output
            inp = (self.output.type, inp.format)
        if self.converter == 'Any converter':
            converter = context.getConverter(inp, self.output)
        else:
            converter = getProcess(self.converter)
        if converter is None:
            raise RuntimeError(_t_('Cannot convert input data'))
        input = self.input
        if self.input.format in list(
                map(getFormat, ('SPM image', 'Series of SPM image'))):
            atts = aimsGlobals.aimsVolumeAttributes(self.input)
            tr = atts.get('storage_to_memory')
            radio = None
            if tr:
                radio = (tr[0] > 0)
            iradio = 0
            if self.input_spm_orientation == 'Radiological':
                iradio = 1
            context.write('input_spm_orientation:', self.input_spm_orientation)
            if radio is None or radio != iradio:
                context.write('changing SPM orientation')
                input = context.temporary(self.input.format)
                inputFiles = self.input.fullPaths()
                outputFiles = input.fullPaths()
                if len(inputFiles) != len(outputFiles):
                    raise RuntimeError(
                        _t_('input and output do not have the same number of files'
                            ))
                for i in six.moves.xrange(len(inputFiles)):
                    if neuroConfig.platform != 'windows':
                        os.symlink(inputFiles[i], outputFiles[i])
                    else:
                        shelltools.cp(inputFiles[i], outputFiles[i])
                if os.path.exists(input.fullPath() + '.minf'):
                    os.unlink(input.fullPath() + '.minf')
                if os.path.exists(self.input.fullPath() + '.minf'):
                    shelltools.cp(self.input.fullPath() + '.minf',
                                  input.fullPath() + '.minf')
                input.readAndUpdateMinf()
                if iradio != 1:
                    iradio = -1
                if tr is None:
                    tr = [1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1]
                    tr[7] = atts['volume_dimension'][1] - 1
                    tr[11] = atts['volume_dimension'][2] - 1
                tr[0] = iradio
                if tr[0] < 0:
                    tr[3] = atts['volume_dimension'][0] - 1
                else:
                    tr[3] = 0
                input.setMinf('storage_to_memory', tr)
        context.runProcess(converter, input, self.output)

    else:
        # Copy input files to output files
        inputFiles = self.input.fullPaths()
        outputFiles = self.output.fullPaths()
        if len(inputFiles) != len(outputFiles):
            raise RuntimeError(
                _t_('input and output do not have the same number of files'))
        for i in six.moves.xrange(len(inputFiles)):
            context.write('cp', inputFiles[i], outputFiles[i])
            shelltools.cp(inputFiles[i], outputFiles[i])

        if self.input.format in list(
                map(getFormat, ('SPM image', 'Series of SPM image'))):
            atts = aimsGlobals.aimsVolumeAttributes(self.input)
            radio = atts.get('spm_radio_convention')
            if self.input_spm_orientation == 'Neurological':
                radio = 0
            elif self.input_spm_orientation == 'Radiological':
                radio = 1
            self.output.readAndUpdateMinf()
            self.output.setMinf('spm_radio_convention', radio)
Пример #11
0
def execution(self, context):
    # to fetch all parameters of the input image (type, transfo, dimension, voxel size, ...)
    inputAtts = aimsGlobals.aimsVolumeAttributes(self.input)
    dtype = inputAtts.get('data_type')
    input1 = self.input

    if input1.format is not self.output.format or dtype != 'S16':
        # Convert input to appropriate output format
        converter = context.getConverter(input1, self.output)
        if converter is None:
            raise RuntimeError(_t_('Cannot convert input data'))
        if self.input.format in list(
                map(getFormat, ('SPM image', 'Series of SPM image'))):
            radio = isRadio(inputAtts)
            iradio = 0
            if self.input_spm_orientation == 'Radiological':
                iradio = 1
            if radio is None or radio != iradio:
                input1 = context.temporary(input1.format, 'Raw FLAIR MRI')
                if neuroConfig.platform != 'windows':
                    os.symlink(self.input.fullName() + '.img',
                               input1.fullName() + '.img')
                    os.symlink(self.input.fullName() + '.hdr',
                               input1.fullName() + '.hdr')
                else:
                    shelltools.cp(self.input.fullName() + '.img',
                                  input1.fullName() + '.img')
                    shelltools.cp(self.input.fullName() + '.hdr',
                                  input1.fullName() + '.hdr')
                if os.path.exists(self.input.fullName() + '.img.minf'):
                    ominf = input1.fullName() + '.img.minf'
                    shelltools.cp(self.input.fullName() + '.img.minf', ominf)
                    s = os.stat(ominf)
                    os.chmod(ominf, s.st_mode | stat.S_IWUSR | stat.S_IWGRP)
                input1.readAndUpdateMinf()
                input1.setMinf('spm_radio_convention', iradio)
        input = input1
        if dtype in ('FLOAT', 'DOUBLE'):
            # in float/double images, NaN values may have been introduced
            # (typically by SPM after a normalization)
            input2 = context.temporary('NIFTI-1 image', 'Raw T1 MRI')
            context.system('AimsRemoveNaN', '-i', input1, '-o', input2)
            input1 = input2
            input = input2
        if converter._id != 'AimsConverter' or dtype == 'S16':
            if dtype == 'S16':
                input = self.output
            else:
                input = context.temporary('NIFTI-1 image', 'Raw T1 MRI')
            context.runProcess(converter, input1, input)
        if dtype != 'S16':
            # here we must convert to S16 data type
            cmd = [
                'AimsFileConvert', '-i',
                input.fullPath(), '-o',
                self.output.fullPath(), '-t', 'S16'
            ]
            if dtype not in ('U8', 'S8', 'U16'):
                # apply rescaling if input type is wider than S16 to avoid losing any precision
                cmd += ['-r', '--omin', 0, '--omax', 4095]
            context.system(*cmd)

    else:
        # Copy input files to output files
        inputFiles = self.input.fullPaths()
        outputFiles = self.output.fullPaths()
        if len(inputFiles) != len(outputFiles):
            raise RuntimeError(
                _t_('input and output do not have the same number of files'))
        inputMinf = self.input.minfFileName()
        if os.path.isfile(inputMinf):
            # if there is a .minf file with the input file, copy it.
            ominf = self.output.fullPath() + '.minf'
            shelltools.cp(inputMinf, ominf)
            s = os.stat(ominf)
            os.chmod(ominf, s.st_mode | stat.S_IWUSR | stat.S_IWGRP)
        for i in range(len(inputFiles)):
            # copy input file in the brainvisa database
            context.write('cp', inputFiles[i], outputFiles[i])
            shelltools.cp(inputFiles[i], outputFiles[i])
        outputAtts = aimsGlobals.aimsVolumeAttributes(self.output)
        for x, y in outputAtts.items():
            if x != "dicom":
                # force completing .minf, without dicom information
                self.output.setMinf(x, y)
        self.output.saveMinf()
        self.output.readAndUpdateMinf()
        if self.input.format in list(
                map(getFormat, ('SPM image', 'Series of SPM image'))):
            radio = isRadio(inputAtts)
            if self.input_spm_orientation == 'Neurological':
                radio = 0
            elif self.input_spm_orientation == 'Radiological':
                radio = 1
            # force completing spm_radio_convention in the .minf file
            self.output.setMinf('spm_radio_convention', radio)
        self.output.saveMinf()
    # the referential can be written in the file header (nifti)
    if self.output.minf().get('referential', None):
        self.output.removeMinf('referential')
    # save referential
    tm = registration.getTransformationManager()
    ref = tm.createNewReferentialFor(self.output, name='Raw FLAIR MRI')
Пример #12
0
def execution(self, context):

    # IMAGE REF :
    reference_image = self.reference_image
    atts = aimsGlobals.aimsVolumeAttributes(reference_image)
    dims = atts.get('volume_dimension',  [1, 1, 1, 1])
    if len(dims) > 3 and dims[3] > 1:
        reference_image = context.temporary('GIS Image')
        context.warning('Reference image is a 4D Volume ==> Conversion to 3D')
        context.system(
            'AimsSumFrame', '-i', self.reference_image, '-o', reference_image)
    dtype = atts.get('data_type')
    if dtype and dtype in ('FLOAT', 'DOUBLE'):
        pdt = atts.get('possible_data_types')
        if not pdt or 'S16' not in pdt:
            # convert to int type with rescaling
            rim = context.temporary('GIS Image')
            context.warning(
                'Reference image is a floating point data Volume ==> Conversion to int16')
            context.system('AimsFileConvert', '-i', reference_image, '-o', rim,
                           '-t', 'S16', '-r', '--omin', 0, '--omax', 4095)
            reference_image = rim

    # IMAGE TEST :
    source_image = self.source_image
    atts = aimsGlobals.aimsVolumeAttributes(source_image)
    dims = atts.get('volume_dimension',  [1, 1, 1, 1])
    if len(dims) > 3 and dims[3] > 1:
        source_image = context.temporary('GIS Image')
        context.warning('Test image is a 4D Volume ==> Conversion to 3D')
        context.system(
            'AimsSumFrame', '-i', self.source_image, '-o', source_image)
    dtype = atts.get('data_type')
    if dtype and dtype in ('FLOAT', 'DOUBLE'):
        pdt = atts.get('possible_data_types')
        if not pdt or 'S16' not in pdt:
            # convert to int type with rescaling
            sim = context.temporary('GIS Image')
            context.warning(
                'Test image is a floating point data Volume ==> Conversion to int16')
            context.system('AimsFileConvert', '-i', source_image, '-o', sim,
                           '-t', 'S16', '-r', '--omin', 0, '--omax', 4095)
            source_image = sim

    command = ['AimsMIRegister',
               '-r', reference_image,
               '-t', source_image,
               '--dir', self.source_to_reference,
               '--inv', self.reference_to_source,
               '--refstartpyr', self.reference_reduction_factor,
               '--seuilref', self.reference_threshold,
               '--seuiltest', self.source_threshold,
               '--error', self.error_epsilon,
               '--graylevel', self.gray_level,
               '--index', self.index_optimized
               ]

    if self.init_with_gravity_center:
        command += ['--gcinit', 'yes']
    else:
        command += ['--gcinit', 'no']

    if self.initial_translation_x is not None:
        command += ['--Tx', self.initial_translation_x]
    if self.initial_translation_y is not None:
        command += ['--Ty', self.initial_translation_y]
    if self.initial_translation_z is not None:
        command += ['--Tz', self.initial_translation_z]
    if self.initial_rotation_x is not None:
        command += ['--Rx', self.initial_rotation_x]
    if self.initial_rotation_y is not None:
        command += ['--Ry', self.initial_rotation_y]
    if self.initial_rotation_z is not None:
        command += ['--Rz', self.initial_rotation_z]

    if self.step_translation_x is not None:
        command += ['--dTx', self.step_translation_x]
    if self.step_translation_y is not None:
        command += ['--dTy', self.step_translation_y]
    if self.step_translation_z is not None:
        command += ['--dTz', self.step_translation_z]
    if self.step_rotation_x is not None:
        command += ['--dRx', self.step_rotation_x]
    if self.step_rotation_y is not None:
        command += ['--dRy', self.step_rotation_y]
    if self.step_rotation_z is not None:
        command += ['--dRz', self.step_rotation_z]

    context.system(*command)

    if self.resampled_image is not None:
        context.runProcess('ApplyTransformation',
                           image=self.source_image,
                           transformation=self.source_to_reference,
                           interpolation=self.resampled_interpolation,
                           resampled_grid_geometry=self.source_image,
                           resampled=self.resampled_image)
Пример #13
0
def execution( self, context ):
    if loadmat is None:
        return self.matlabExecution( context )

    # scipy / numpy / pyaims execution
    aim = self.source_volume
    amat = self.read
    bim = self.registered_volume
    if self.registered_volume is not None:
        bmatname = self.registered_volume.fullName() + '.mat'
        bmat = self.central_to_registered
        if bmat is None:
            context.write( 'No destination transformation - ' \
                           'taking its origin translation' )
            # bim = None
    else:
        bmat = None
        context.write( 'No destination volume - going only to central ref' )

    aattrs = aimsGlobals.aimsVolumeAttributes( aim )
    # context.write( 'aatrs: ', aattrs )
    if bim:
        battrs = aimsGlobals.aimsVolumeAttributes( bim )
        # context.write( 'battrs: ', battrs )

    dim1 = aattrs[ 'volume_dimension' ][:3]
    vox1 = aattrs[ 'voxel_size' ][:3]
    t1 = aims.Motion( aattrs[ 'transformations' ][0] )
    s2m = aims.Motion( aattrs[ 'storage_to_memory' ] )
    mvox1 = aims.Motion()
    mvox1.rotation().setValue( vox1[0], 0, 0 )
    mvox1.rotation().setValue( vox1[1], 1, 1 )
    mvox1.rotation().setValue( vox1[2], 2, 2 )
    tn = t1 * s2m * mvox1
    origin1 = tn.inverse().transform( aims.Point3df( 0, 0, 0 ) )
    origin1 += aims.Point3df( 1, 1, 1 ) # add 1 to matlab coords
    if bim:
        dim2 = battrs[ 'volume_dimension' ][:3]
        vox2 = battrs[ 'voxel_size' ][:3]
        t2 = aims.Motion( battrs[ 'transformations' ][0] )
        s2m2 = aims.Motion( battrs[ 'storage_to_memory' ] )
        mvox2 = aims.Motion()
        mvox2.rotation().setValue( vox2[0], 0, 0 )
        mvox2.rotation().setValue( vox2[1], 1, 1 )
        mvox2.rotation().setValue( vox2[2], 2, 2 )
        tn = t2 * s2m2 * mvox2
        origin2 = tn.inverse().transform( aims.Point3df( 0, 0, 0 ) )
        origin2 += aims.Point3df( 1, 1, 1 ) # add 1 to matlab coords
    else:
        dim2 = [ 0, 0, 0 ]
        vox2 = [ 1, 1, 1 ]
        origin2 = [ 0, 0, 0 ]

    # context.write( 'dim1:', str( dim1 ) )
    # context.write( 'vox1:', str( vox1 ) )
    # context.write( 'origin1:', str( origin1 ) )
    # context.write( 'dim2', str( dim2 ) )
    # context.write( 'vox2:', str( vox2 ) )
    # context.write( 'origin2:', str( origin2 ) )

    # create matlab script

    DIM1 = numpy.transpose( numpy.mat( dim1 ) )
    VOX1 = numpy.transpose( numpy.mat( vox1 ) )
    ORIGIN1 = numpy.transpose( numpy.mat( origin1 ) )
    DIM2 = numpy.transpose( numpy.mat( dim2 ) )
    VOX2 = numpy.transpose( numpy.mat( vox2 ) )
    ORIGIN2 = numpy.transpose( numpy.mat( origin2 ) )
    trans1 = self.write.fullPath()

    if os.path.exists( amat.fullPath() ):
        a = loadmat( amat.fullPath() )
        aM = numpy.mat( a[ 'M' ] ).astype( numpy.double )
        aM = aM * numpy.mat( numpy.diag( [ 1./vox1[0], 1./vox1[1], 1./vox1[2],
          1. ] ) )
    else:
        aM = numpy.mat( numpy.diag( [ 1., 1., 1., 1., ] ) )
        aM[ 0:3, 3 ] = - numpy.multiply( ORIGIN1, VOX1 )

    ainv = numpy.linalg.inv( aM )
    o1 = ainv[:, 3 ]
    # Y and Z axis are flipped
    o1[ 1:3 ] = -o1[ 1:3 ] + numpy.multiply( ( DIM1[1:3] - 1 ), VOX1[1:3] )

    if bmat:
        if os.path.exists( bmat.fullPath() ):
            b = loadmat( bmat.fullPath() );
            bM = numpy.mat( b[ 'M' ] ).astype( numpy.double )
            bM = bM * numpy.mat( numpy.diag( [ 1./vox2[0], 1./vox2[1], 1./vox2[2],
              1. ] ) )
        else:
            bM = numpy.mat( numpy.diag( [ 1., 1., 1., 1. ] ) )
            bM[ 0:3, 3 ] = - numpy.multiply( ORIGIN2, VOX2 )
    else:
        bM =  numpy.mat( numpy.diag( [ 1., 1., 1., 1. ] ) )
    bM[ 0:3, 3 ] = - numpy.multiply( ORIGIN2, VOX2 )
    binv = numpy.linalg.inv( bM )
    o2 = binv[:, 3 ]
    # Y and Z axis are flipped
    o2[ 1:3 ] = -o2[ 1:3, 0 ] + numpy.multiply( ( DIM2[1:3] - 1 ), VOX2[1:3] )

    # flip Y and Z axis to go to Aims/Anatomist world
    aflip = numpy.mat( numpy.diag( [ 1., -1., -1., 1. ] ) )
    aflip[ 1:3, 3 ] = numpy.multiply( ( DIM1[1:3] - 1 ), VOX1[1:3] )
    aM = aM * aflip
    # verify origin still transforms to 0
    # aM * o1
    bflip = numpy.mat( numpy.diag( [ 1., -1., -1., 1. ] ) )
    bflip[ 1:3, 3 ] = numpy.multiply( ( DIM2[1:3] - 1 ), VOX2[1:3] )
    bM = bM * bflip
    # verify origin still transforms to 0
    # bM * o2

    M = numpy.linalg.inv(bM) * aM

    # M * o1 - o2

    T = numpy.array( numpy.transpose( M[ 0:3, 3 ] ) )[ 0,: ]

    context.write( 'writing ', trans1 )
    fid = open( trans1, 'w' )

    Mt = numpy.array( numpy.transpose( M[0:3, 0:3] ) )
    print('%f %f %f' % tuple( T ), file=fid)
    print('%f %f %f' % tuple( Mt[ 0,: ] ), file=fid)
    print('%f %f %f' % tuple( Mt[ 1,: ] ), file=fid)
    print('%f %f %f' % tuple( Mt[ 2,: ] ), file=fid)
    fid.close()
Пример #14
0
def matlabExecution( self, context ):
    aim = self.source_volume
    amat = self.read
    bim = self.registered_volume
    if self.registered_volume is not None:
        bmatname = self.registered_volume.fullName() + '.mat'
        bmat = self.central_to_registered
        if bmat is None:
            context.write( 'No destination transformation - ' \
                           'taking its origin translation' )
            # bim = None
    else:
        bmat = None
        context.write( 'No destination volume - going only to central ref' )

    aattrs = aimsGlobals.aimsVolumeAttributes( aim )
    # context.write( 'aatrs: ', aattrs )
    if bim:
        battrs = aimsGlobals.aimsVolumeAttributes( bim )
        # context.write( 'battrs: ', battrs )


    dim1 = aattrs[ 'volume_dimension' ][:3]
    vox1 = aattrs[ 'voxel_size' ][:3]
    origin1 = aattrs.get( 'spm_origin' )
    if not origin1:
        origin1 = ( 0, 0, 0 )
    if bim:
        dim2 = battrs[ 'volume_dimension' ][:3]
        vox2 = battrs[ 'voxel_size' ][:3]
        origin2 = battrs.get( 'spm_origin' )
        if not origin2:
            origin2 = ( 0, 0, 0 )
    else:
        dim2 = [ 0, 0, 0 ]
        vox2 = [ 1, 1, 1 ]
        origin2 = [ 0, 0, 0 ]

    # context.write( 'dim1:', str( dim1 ) )
    # context.write( 'vox1:', str( vox1 ) )
    # context.write( 'origin1:', str( origin1 ) )
    # context.write( 'dim2', str( dim2 ) )
    # context.write( 'vox2:', str( vox2 ) )
    # context.write( 'origin2:', str( origin2 ) )

    # create matlab script

    matlabcom = "amat = '"
    if amat:
        matlabcom += amat.fullPath()
    matlabcom += "';\n"
    if bmat:
        matlabcom += "bmat = '" + bmat.fullPath() + "';\n"
    matlabcom += "DIM1 = " + listToVectorString( dim1 ) + ";\n"
    matlabcom += "VOX1 = " + listToVectorString( vox1 ) + ";\n"
    matlabcom += "ORIGIN1 = " + listToVectorString( origin1 ) + ";\n"
    matlabcom += "DIM2 = " + listToVectorString( dim2 ) + ";\n"
    matlabcom += "VOX2 = " + listToVectorString( vox2 ) + ";\n"
    matlabcom += "ORIGIN2 = " + listToVectorString( origin2 ) + ";\n"
    matlabcom += "trans1 = '" + self.write.fullPath() + "';\n"

    matlabcom += '''if( exist( amat ) )
  a = load( amat );
  a.M = a.M * diag( [ 1/VOX1(1) 1/VOX1(2) 1/VOX1(3) 1 ] );
  disp( [ amat ' read' ] );
else
  a.M = diag( [ 1 1 1 1 ] );  % diag( [ VOX1(1) VOX1(2) VOX1(3) 1 ] );
  a.M( 1:3, 4 ) = - ( ORIGIN1 .* VOX1 )';
end

ainv = inv( a.M );
o1 = ainv( :, 4 );
% Y and Z axis are flipped
o1( 2:3 ) = -o1( 2:3 ) + ( ( DIM1(2:3) - 1 ) .* VOX1(2:3) )';

'''
    if bmat:
        matlabcom += '''if( exist( bmat ) )
  b = load( bmat );
  b.M = b.M * diag( [ 1/VOX2(1) 1/VOX2(2) 1/VOX2(3) 1 ] );
  disp( [ bmat ' read' ] );
else
  b.M = diag( [ 1 1 1 1 ] ); % diag( [ VOX2(1) VOX2(2) VOX2(3) 1 ] );
  b.M( 1:3, 4 ) = - ( ORIGIN2 .* VOX2 )';
end
'''
    else:
        matlabcom += '''b.M = diag( [ 1 1 1 1 ] ); % diag( [ VOX2(1) VOX2(2) VOX2(3) 1 ] );
b.M( 1:3, 4 ) = - ( ORIGIN2 .* VOX2 )';
'''
    matlabcom += '''binv = inv( b.M );
o2 = binv( :, 4 );
% Y and Z axis are flipped
o2( 2:3 ) = -o2( 2:3, 1 ) + ( ( DIM2(2:3) - 1 ) .* VOX2(2:3) )';

% flip Y and Z axis to go to Aims/Anatomist world
aflip = diag( [ 1 -1 -1 1 ] );
aflip( 2:3, 4 ) = ( ( DIM1(2:3) - 1 ) .* VOX1(2:3) )';
a.M = a.M * aflip;
% verify origin still transforms to 0
%a.M * o1
bflip = diag( [ 1 -1 -1 1 ] );
bflip( 2:3, 4 ) = ( ( DIM2(2:3) - 1 ) .* VOX2(2:3) )';
b.M = b.M * bflip;
% verify origin still transforms to 0
%b.M * o2

M = inv(b.M) * a.M;

disp( 'Result matrix :' );
M

%M * o1 - o2

T = M( 1:3, 4 )';


disp( [ 'writing ' trans1 ] );
fid = fopen( trans1, 'w' );
if( fid == -1 )
  disp( [ 'could not write ' trans1 ] );
  exit 1
end

fprintf( fid, '%f %f %f\\n', T );
fprintf( fid, '%f %f %f\\n', M(1:3,1:3)' );
fclose( fid );

%disp( [ 'writing ' trans2 ] );
%fid = fopen( trans2, 'w' );
%if( fid == -1 )
%  disp( [ 'could not write ' trans2 ] );
%  exit 1
%end

%M = inv( M );
%T = M( 1:3, 4 )';

%fprintf( fid, '%f %f %f\\n', T );
%fprintf( fid, '%f %f %f\\n', M(1:3,1:3)' );
%fclose( fid );

'''

    ml = matlab.matlab()
    ml.eval( matlabcom )
    if self.removeSource:
        for f in self.read.fullPaths():
            os.unlink( f )