def _execute(self, x): #self.G.I = brian.TimedArray(10000 * x * brian.mV, dt=1 * brian.ms) self.G.I = brian.TimedArray(100 * scipy.dot(x, self.w_in.T) * brian.mV, dt=1 * brian.ms) self.network = brian.Network(self.G, self.Mv, self.Ms) self.network.reinit() self.network.run((x.shape[0] + 1) * brian.ms) retval = self.Mv.values[:, 0:x.shape[0]].T
def run_sim(number_neurons=default_number_neurons, connection_probability=default_connection_probability, synaptic_weights=default_synaptic_weights, synaptic_time_constant=default_synaptic_time_constant, tend=300): '''run a simulation of a population of leaky integrate-and-fire excitatory neurons that are randomly connected. The population is injected with a transient current.''' from brian.units import mvolt, msecond, namp, Mohm import brian brian.clear() El = 0 * mvolt tau_m = 30 * msecond tau_syn = synaptic_time_constant * msecond R = 20 * Mohm v_threshold = 30 * mvolt v_reset = 0 * mvolt tau_refractory = 4 * msecond eqs = brian.Equations(''' dv/dt = (-(v - El) + R*I)/tau_m : volt I = I_syn + I_stim : amp dI_syn/dt = -I_syn/tau_syn : amp I_stim : amp ''') external_current = np.zeros(tend) external_current[np.arange(0, 100)] = 5 * namp group = brian.NeuronGroup( model=eqs, N=number_neurons, threshold=v_threshold, reset=v_reset, refractory=tau_refractory) group.I_stim = brian.TimedArray(external_current, dt=1*msecond) connections = brian.Connection(group, group, 'I_syn') connections.connect_random(sparseness=connection_probability, weight=synaptic_weights*namp) spike_monitor = brian.SpikeMonitor(group) population_rate_monitor = brian.PopulationRateMonitor(group, bin=10*msecond) brian.reinit() brian.run(tend * msecond) return spike_monitor, population_rate_monitor
def run_sim(ffExcInputMult=None, ffInhInputMult=None): """Run the cond-based LIF neuron simulation. Takes a few minutes to construct network and run Parameters ---------- ffExcInputMult: scalar: FF input magnitude to E cells. multiply ffInputV by this value and connect to E cells ffInhInputMult: scalar: FF input magnitude to I cells. Returns ------- outDict - spike times, records of continuous values from simulation """ # use helper to get input timecourses (ffInputV, condAddV) = create_input_vectors( doDebugPlot=False) # multiplied by scalars below # setup initial state stT = time.time() brian.set_global_preferences(usecodegen=True) brian.set_global_preferences(useweave=True) brian.set_global_preferences(usecodegenweave=True) brian.clear(erase=True, all=True) brian.reinit_default_clock() clk = brian.Clock(dt=0.05 * ms) ################ # create neurons, define connections neurNetwork = brian.NeuronGroup(nNet, model=eqs, threshold=vthresh, reset=vrest, refractory=absRefractoryMs * msecond, order=1, compile=True, freeze=False, clock=clk) # create neuron pools neurCE = neurNetwork.subgroup(nExc) neurCI = neurNetwork.subgroup(nInh) connCE = brian.Connection(neurCE, neurNetwork, 'ge') connCI = brian.Connection(neurCI, neurNetwork, 'gi') print('n cells: %d, nE,I %d,%d, %s, absRefractoryMs: %d' % (nNet, nExc, nInh, repr(clk), absRefractoryMs)) # connect the network to itself connCE.connect_random(neurCE, neurNetwork, internalSparseness, weight=connENetWeight) connCI.connect_random(neurCI, neurNetwork, internalSparseness, weight=connINetWeight) # connect inputs that change spont rate assert ( spontAddRate <= 0 ), 'Spont add rate should be negative - convention: neg, excite inhibitory cells' spontAddNInpSyn = 100 nTotalSpontNeurons = (spontAddNInpSyn * nInh * 0.02) neurSpont = brian.PoissonGroup(nTotalSpontNeurons, -1.0 * spontAddRate * Hz) connCSpont = brian.Connection(neurSpont, neurCI, 'ge') connCSpont.connect_random( p=spontAddNInpSyn * 1.0 / nTotalSpontNeurons, weight=connENetWeight, # match internal excitatory strengths fixed=True) # connect the feedforward visual (poisson) inputs to excitatory cells (ff E) ffExcInputNInpSyn = 100 nTotalFfNeurons = (ffExcInputNInpSyn * ffExcInputNTargs * 0.02 ) # one pop of input cells for both E and I FF _ffExcInputV = ffExcInputMult * np.abs(a_(ffInputV).copy()) assert (np.all( _ffExcInputV >= 0)), 'Negative FF rates are rectified to zero' neurFfExcInput = brian.PoissonGroup( nTotalFfNeurons, lambda t: _ffExcInputV[int(t * 1000)] * Hz) connCFfExcInput = brian.Connection(neurFfExcInput, neurNetwork, 'ge') connCFfExcInput.connect_random(neurFfExcInput, neurCE[0:ffExcInputNTargs], ffExcInputNInpSyn * 1.0 / nTotalFfNeurons, weight=connENetWeight, fixed=True) # connect the feedforward visual (poisson) inputs to inhibitory cells (ff I) ffInhInputNInpSyn = 100 _ffInhInputV = ffInhInputMult * np.abs(ffInputV.copy()) assert (np.all( _ffInhInputV >= 0)), 'Negative FF rates are rectified to zero' neurFfInhInput = brian.PoissonGroup( nTotalFfNeurons, lambda t: _ffInhInputV[int(t * 1000)] * Hz) connCFfInhInput = brian.Connection(neurFfInhInput, neurNetwork, 'ge') connCFfInhInput.connect_random( neurFfInhInput, neurCI[0:ffInhInputNTargs], ffInhInputNInpSyn * 1.0 / nTotalFfNeurons, # sparseness weight=connENetWeight, fixed=True) # connect added step (ChR2) conductance to excitatory cells condAddAmp = 4.0 gAdd = brian.TimedArray(condAddAmp * condAddV, dt=1 * ms) print('Adding conductance for %d cells (can be slow): ' % len(condAddNeurNs), end=' ') for (iN, tN) in enumerate(condAddNeurNs): neurCE[tN].gAdd = gAdd print('done') # Initialize using some randomness so all neurons don't start in same state. # Alternative: initialize with constant values, give net extra 100-300ms to evolve from initial state. neurNetwork.v = (brian.randn(1) * 5.0 - 65) * mvolt neurNetwork.ge = brian.randn(nNet) * 1.5 + 4 neurNetwork.gi = brian.randn(nNet) * 12 + 20 # Record continuous variables and spikes monSTarg = brian.SpikeMonitor(neurNetwork) if contRecNs is not None: contRecClock = brian.Clock(dt=contRecStepMs * ms) monVTarg = brian.StateMonitor(neurNetwork, 'v', record=contRecNs, clock=contRecClock) monGETarg = brian.StateMonitor(neurNetwork, 'ge', record=contRecNs, clock=contRecClock) monGAddTarg = brian.StateMonitor(neurNetwork, 'gAdd', record=contRecNs, clock=contRecClock) monGITarg = brian.StateMonitor(neurNetwork, 'gi', record=contRecNs, clock=contRecClock) # construct brian.Network before running (so brian explicitly knows what to update during run) netL = [ neurNetwork, connCE, connCI, monSTarg, neurFfExcInput, connCFfExcInput, neurFfInhInput, connCFfInhInput, neurSpont, connCSpont ] if contRecNs is not None: # noinspection PyUnboundLocalVariable netL.append([monVTarg, monGETarg, monGAddTarg, monGITarg]) # cont monitors net = brian.Network(netL) print("Network construction time: %3.1f seconds" % (time.time() - stT)) # run print("Simulation running...") sys.stdout.flush() start_time = time.time() net.run(simRunTimeS * second, report='text', report_period=30.0 * second) durationS = time.time() - start_time print("Simulation time: %3.1f seconds" % durationS) outNTC = collections.namedtuple( 'outNTC', 'vm ge gadd gi clockDtS clockStartS clockEndS spiketimes contRecNs') outNTC.__new__.__defaults__ = (None, ) * len( outNTC._fields) # default to None outNT = outNTC(clockDtS=float(monSTarg.clock.dt), clockStartS=float(monSTarg.clock.start), clockEndS=float(monSTarg.clock.end), spiketimes=a_(monSTarg.spiketimes.values(), dtype='O'), contRecNs=contRecNs) if contRecNs is not None: outNT = outNT._replace(vm=monVTarg.values, ge=monGETarg.values, gadd=monGAddTarg.values, gi=monGITarg.values) return outNT
def fft_std(delta_u, run_num, new_connectivity, osc, rep): #bn.seed(int(time.time())) bn.reinit_default_clock() #bn.seed(1412958308+2) bn.defaultclock.dt = 0.5 * bn.ms #============================================================================== # Define constants for the model. #============================================================================== fft_file = './std_fft_p20_' rate_file = './std_rate_p20_' print delta_u print run_num print new_connectivity print rep if osc: T = 5.5 * bn.second else: T = 2.5 * bn.second n_tsteps = T / bn.defaultclock.dt fft_start = 0.5 * bn.second / bn.defaultclock.dt # Time window for the FFT computation ro = 1.2 * bn.Hz SEE1 = 1.0 SEE2 = 1.0 qee1 = 1.00 # Fraction of NMDA receptors for e to e connections qee2 = 0.00 qie1 = 1.00 # Fraction of NMDA receptors for e to i connections qie2 = 0.00 uee1 = 0.2 - delta_u uee2 = 0.2 + delta_u uie1 = 0.2 uie2 = 0.2 trec1 = 1000.0 * bn.ms trec2 = 1000.0 * bn.ms k = 0.65 #Jeo_const = 1.0#*bn.mV # Base strength of o (external) to e connections Ne = 3200 # number of excitatory neurons Ni = 800 # number of inhibitory neurons No = 20000 # number of external neurons N = Ne + Ni pcon = 0.2 # probability of connection Jee = 10.0 / (Ne * pcon) Jie = 10.0 / (Ne * pcon) Jii = k * 10.0 / (Ni * pcon) Jei = k * 10.0 / (Ni * pcon) Jeo = 1.0 El = -60.0 * bn.mV # leak reversal potential Vreset = -52.0 * bn.mV # reversal potential Vthresh = -40.0 * bn.mV # spiking threshold tref = 2.0 * bn.ms # refractory period te = 20.0 * bn.ms # membrane time constant of excitatory neurons ti = 10.0 * bn.ms # membrane time constant of inhibitory neruons tee_ampa = 10.0 * bn.ms # time const of ampa currents at excitatory neurons tee_nmda = 100.0 * bn.ms # time const of nmda currents at excitatory neurons tie_ampa = 10.0 * bn.ms # time const of ampa currents at inhibitory neurons tie_nmda = 100.0 * bn.ms # time const of nmda currents at inhibitory neurons tii_gaba = 10.0 * bn.ms # time const of GABA currents at inhibitory neurons tei_gaba = 10.0 * bn.ms # time const of GABA currents at excitatory neurons teo_input = 100.0 * bn.ms #============================================================================== # Define model structure #============================================================================== model = ''' dV/dt = (-(V-El)+J_ampa1*I_ampa1+J_nmda1*I_nmda1+J_ampa2*I_ampa2+J_nmda2*I_nmda2-J_gaba*I_gaba+J_input*I_input+eta)/tm : bn.volt dI_ampa1/dt = -I_ampa1/t_ampa : bn.volt dI_nmda1/dt = -I_nmda1/t_nmda : bn.volt dI_ampa2/dt = -I_ampa2/t_ampa : bn.volt dI_nmda2/dt = -I_nmda2/t_nmda : bn.volt dI_gaba/dt = -I_gaba/t_gaba : bn.volt dI_input/dt = (-I_input+mu)/t_input : bn.volt dx1/dt = (1-x1)/t1_rec : 1 dx2/dt = (1-x2)/t2_rec : 1 u1 : 1 t1_rec : bn.second u2 : 1 t2_rec : bn.second mu : bn.volt eta : bn.volt J_ampa1 : 1 J_nmda1 : 1 J_ampa2 : 1 J_nmda2 : 1 J_gaba : 1 J_input : 1 tm : bn.second t_ampa : bn.second t_nmda : bn.second t_gaba : bn.second t_input : bn.second ''' P_reset = "V=-52*bn.mV;x1+=-u1*x1;x2+=-u2*x2" Se_model = ''' we_ampa1 : bn.volt we_nmda1 : bn.volt we_ampa2 : bn.volt we_nmda2 : bn.volt ''' Se_pre = ('I_ampa1 += x1_pre*we_ampa1', 'I_nmda1 += x1_pre*we_nmda1', 'I_ampa2 += x2_pre*we_ampa2', 'I_nmda2 += x2_pre*we_nmda2') Si_model = ''' wi_gaba : bn.volt ''' Si_pre = 'I_gaba += wi_gaba' So_model = ''' wo_input : bn.volt ''' So_pre = 'I_input += wo_input' #============================================================================== # Define populations #============================================================================== P = bn.NeuronGroup(N, model, threshold=Vthresh, reset=P_reset, refractory=tref) Pe = P[0:Ne] Pe.tm = te Pe.t_ampa = tee_ampa Pe.t_nmda = tee_nmda Pe.t_gaba = tei_gaba Pe.t_input = teo_input Pe.I_ampa1 = 0 * bn.mV Pe.I_nmda1 = 0 * bn.mV Pe.I_ampa2 = 0 * bn.mV Pe.I_nmda2 = 0 * bn.mV Pe.I_gaba = 0 * bn.mV Pe.I_input = 0 * bn.mV Pe.V = (np.random.rand(Pe.V.size) * 12 - 52) * bn.mV Pe.x1 = 1.0 Pe.x2 = 1.0 Pe.u1 = uee1 Pe.u2 = uee2 Pe.t1_rec = trec1 Pe.t2_rec = trec2 Pi = P[Ne:(Ne + Ni)] Pi.tm = ti Pi.t_ampa = tie_ampa Pi.t_nmda = tie_nmda Pi.t_gaba = tii_gaba Pi.t_input = teo_input Pi.I_ampa1 = 0 * bn.mV Pi.I_nmda1 = 0 * bn.mV Pi.I_ampa2 = 0 * bn.mV Pi.I_nmda2 = 0 * bn.mV Pi.I_gaba = 0 * bn.mV Pi.I_input = 0 * bn.mV Pi.V = (np.random.rand(Pi.V.size) * 12 - 52) * bn.mV Pi.x1 = 1.0 Pi.x2 = 1.0 Pi.u1 = 0.0 Pi.u2 = 0.0 Pi.t1_rec = 1.0 Pi.t2_rec = 1.0 Pe.J_ampa1 = Jee * (1 - qee1) #*SEE1 Pe.J_nmda1 = Jee * qee1 #*SEE1 Pe.J_ampa2 = Jee * (1 - qee2) #*SEE2 Pe.J_nmda2 = Jee * qee2 #*SEE2 Pi.J_ampa1 = Jie * (1 - qie2) #*SEE2 Pi.J_nmda1 = Jie * qie2 #*SEE2 Pi.J_ampa2 = Jie * (1 - qie1) #*SEE1 Pi.J_nmda2 = Jie * qie1 #*SEE1 Pe.J_gaba = Jei Pi.J_gaba = Jii Pe.J_input = Jeo Pi.J_input = Jeo #============================================================================== # Define inputs #============================================================================== if osc: Pe.mu = 12.0 * bn.mV holder = np.zeros((n_tsteps, )) t_freq = np.linspace(0, 10, n_tsteps) fo = 0.2 # Smallest frequency in the signal fe = 10.0 # Largest frequency in the signal F = int(fe / 0.2) for m in range(1, F + 1): holder = holder + np.cos(2 * np.pi * m * fo * t_freq - m * (m - 1) * np.pi / F) holder = holder / np.max(holder) Pe.eta = bn.TimedArray(0.0 * bn.mV * holder) #, dt=0.5*bn.ms) Background_eo = bn.PoissonInput(Pe, N=1000, rate=1.05 * bn.Hz, weight=0.2 * bn.mV, state='I_input') Background_io = bn.PoissonInput(Pi, N=1000, rate=1.0 * bn.Hz, weight=0.2 * bn.mV, state='I_input') Pi.mu = 0 * bn.mV Pi.eta = 0 * bn.mV #, dt=0.5*bn.ms) Po = bn.PoissonGroup(No, rates=0 * bn.Hz) else: Background_eo = bn.PoissonInput(Pe, N=1000, rate=1.05 * bn.Hz, weight=0.2 * bn.mV, state='I_input') Background_io = bn.PoissonInput(Pi, N=1000, rate=1.0 * bn.Hz, weight=0.2 * bn.mV, state='I_input') holder_pe = np.zeros((n_tsteps, )) time_steps = np.linspace(0, T / bn.second, n_tsteps) holder_pe[time_steps < 0.5] = 0.0 * bn.mV holder_pe[time_steps >= 0.5] = 6.0 * bn.mV #25 holder_pe[time_steps > 1.5] = 0.0 * bn.mV #25 Pe.mu = bn.TimedArray(holder_pe) def firing_function(t, ro): if t > 0.5 * bn.second and t < 3.5 * bn.second: return 0.0 * bn.Hz else: return 0.0 * bn.Hz Pe.eta = 0 * bn.mV #, dt=0.5*bn.ms) Pi.mu = 0.0 * bn.mV Pi.eta = 0 * bn.mV #, dt=0.5*bn.ms) Po = bn.PoissonGroup(No, rates=lambda t: firing_function(t, ro)) #============================================================================== # Define synapses #============================================================================== See1 = bn.Synapses(Pe, Pe, model=Se_model, pre=Se_pre) See2 = bn.Synapses(Pe, Pe, model=Se_model, pre=Se_pre) Sie1 = bn.Synapses(Pe, Pi, model=Se_model, pre=Se_pre) Sie2 = bn.Synapses(Pe, Pi, model=Se_model, pre=Se_pre) Sei = bn.Synapses(Pi, Pe, model=Si_model, pre=Si_pre) Sii = bn.Synapses(Pi, Pi, model=Si_model, pre=Si_pre) Seo = bn.Synapses(Po, Pe, model=So_model, pre=So_pre) #============================================================================== # Define random connections #============================================================================== if new_connectivity: See1.connect_random(Pe, Pe, sparseness=pcon / 2.0) See2.connect_random(Pe, Pe, sparseness=pcon / 2.0) Sie1.connect_random(Pe, Pi, sparseness=pcon / 2.0) Sie2.connect_random(Pe, Pi, sparseness=pcon / 2.0) Sii.connect_random(Pi, Pi, sparseness=pcon) Sei.connect_random(Pi, Pe, sparseness=pcon) Seo.connect_random(Po, Pe, sparseness=pcon) print 'Saving' See1.save_connectivity('./See1_connections_std_saver_p20_' + str(run_num)) See2.save_connectivity('./See2_connections_std_saver_p20_' + str(run_num)) Sie1.save_connectivity('./Sie1_connections_std_saver_p20_' + str(run_num)) Sie2.save_connectivity('./Sie2_connections_std_saver_p20_' + str(run_num)) Sii.save_connectivity('./Sii_connections_std_saver_p20_' + str(run_num)) Sei.save_connectivity('./Sei_connections_std_saver_p20_' + str(run_num)) Seo.save_connectivity('./Seo_connections_std_saver_p20_' + str(run_num)) else: print 'Loading' See1.load_connectivity('./See1_connections_std_saver_p20_' + str(run_num)) See2.load_connectivity('./See2_connections_std_saver_p20_' + str(run_num)) Sie1.load_connectivity('./Sie1_connections_std_saver_p20_' + str(run_num)) Sie2.load_connectivity('./Sie2_connections_std_saver_p20_' + str(run_num)) Sii.load_connectivity('./Sii_connections_std_saver_p20_' + str(run_num)) Sei.load_connectivity('./Sei_connections_std_saver_p20_' + str(run_num)) Seo.load_connectivity('./Seo_connections_std_saver_p20_' + str(run_num)) See1.we_ampa1 = SEE1 * 1.0 * bn.mV / tee_ampa See1.we_nmda1 = SEE1 * 1.0 * bn.mV / tee_nmda See1.we_ampa2 = 0.0 * bn.mV / tee_ampa See1.we_nmda2 = 0.0 * bn.mV / tee_nmda See2.we_ampa1 = 0.0 * bn.mV / tee_ampa See2.we_nmda1 = 0.0 * bn.mV / tee_nmda See2.we_ampa2 = SEE2 * 1.0 * bn.mV / tee_ampa See2.we_nmda2 = SEE2 * 1.0 * bn.mV / tee_nmda Sie1.we_ampa1 = 0.0 * bn.mV / tie_ampa Sie1.we_nmda1 = 0.0 * bn.mV / tie_nmda Sie1.we_ampa2 = SEE1 * 1.0 * bn.mV / tie_ampa Sie1.we_nmda2 = SEE1 * 1.0 * bn.mV / tie_nmda Sie2.we_ampa1 = SEE2 * 1.0 * bn.mV / tie_ampa Sie2.we_nmda1 = SEE2 * 1.0 * bn.mV / tie_nmda Sie2.we_ampa2 = 0.0 * bn.mV / tie_ampa Sie2.we_nmda2 = 0.0 * bn.mV / tie_nmda Sei.wi_gaba = 1.0 * bn.mV / tei_gaba Sii.wi_gaba = 1.0 * bn.mV / tii_gaba Seo.wo_input = 1.0 * bn.mV / teo_input #============================================================================== # Define monitors #============================================================================== Pe_mon_V = bn.StateMonitor(Pe, 'V', timestep=10, record=True) Pe_mon_eta = bn.StateMonitor(Pe, 'eta', timestep=1, record=True) Pe_mon_ampa1 = bn.StateMonitor(Pe, 'I_ampa1', timestep=1, record=True) Pe_mon_nmda1 = bn.StateMonitor(Pe, 'I_nmda1', timestep=1, record=True) Pe_mon_ampa2 = bn.StateMonitor(Pe, 'I_ampa2', timestep=1, record=True) Pe_mon_nmda2 = bn.StateMonitor(Pe, 'I_nmda2', timestep=1, record=True) Pe_mon_gaba = bn.StateMonitor(Pe, 'I_gaba', timestep=1, record=True) Pe_mon_input = bn.StateMonitor(Pe, 'I_input', timestep=10, record=True) See1_mon_x = bn.StateMonitor(Pe, 'x1', timestep=10, record=True) See2_mon_x = bn.StateMonitor(Pe, 'x2', timestep=10, record=True) Pe_ratemon = bn.PopulationRateMonitor(Pe, bin=10.0 * bn.ms) Pi_ratemon = bn.PopulationRateMonitor(Pi, bin=10.0 * bn.ms) #============================================================================== # Run model #============================================================================== timer = 0 * bn.second t_start = time.time() bn.run(T, report='graphical') timer = timer + T print '-------------------------------------------------------' print 'Time is ' + str(timer) + ' seconds' t_end = time.time() print 'Time to compute last ' +str(T)+' seconds is: ' + \ str(t_end - t_start) + ' seconds' print '-------------------------------------------------------\n' Pe_mon_ampa1_vals = Pe.J_ampa1[0] * np.mean(Pe_mon_ampa1.values.T, axis=1) Pe_mon_nmda1_vals = Pe.J_nmda1[0] * np.mean(Pe_mon_nmda1.values.T, axis=1) Pe_mon_ampa2_vals = Pe.J_ampa2[0] * np.mean(Pe_mon_ampa2.values.T, axis=1) Pe_mon_nmda2_vals = Pe.J_nmda2[0] * np.mean(Pe_mon_nmda2.values.T, axis=1) Pe_mon_ampa_vals = Pe_mon_ampa1_vals + Pe_mon_ampa2_vals Pe_mon_nmda_vals = Pe_mon_nmda1_vals + Pe_mon_nmda2_vals Pe_mon_gaba_vals = Pe.J_gaba[0] * np.mean(Pe_mon_gaba.values.T, axis=1) Pe_mon_input_vals = Pe.J_input[0] * np.mean(Pe_mon_input.values.T, axis=1) Pe_mon_V_vals = np.mean(Pe_mon_V.values.T, axis=1) Pe_mon_all_vals = Pe_mon_ampa_vals + Pe_mon_nmda_vals - Pe_mon_gaba_vals See1_mon_x_vals = np.mean(See1_mon_x.values.T, axis=1) See2_mon_x_vals = np.mean(See2_mon_x.values.T, axis=1) #============================================================================== # Save into a Matlab file #============================================================================== if osc: Pe_output = Pe.J_ampa1[0]*Pe_mon_ampa1.values+Pe.J_nmda1[0]*Pe_mon_nmda1.values + \ Pe.J_ampa2[0]*Pe_mon_ampa2.values+Pe.J_nmda2[0]*Pe_mon_nmda2.values-Pe.J_gaba[0]*Pe_mon_gaba.values Pe_output = Pe_output[:, fft_start:, ] Pe_V = Pe_mon_V.values[:, fft_start:, ] Pe_glut = Pe.J_ampa1[0]*Pe_mon_ampa1.values+Pe.J_nmda1[0]*Pe_mon_nmda1.values + \ Pe.J_ampa2[0]*Pe_mon_ampa2.values+Pe.J_nmda2[0]*Pe_mon_nmda2.values Pe_glut = Pe_glut[:, fft_start:, ] Pe_gaba = Pe.J_gaba[0] * Pe_mon_gaba.values Pe_gaba = Pe_gaba[:, fft_start:, ] Pe_input = Pe_mon_eta[:, fft_start:, ] T_step = bn.defaultclock.dt holder = { 'Pe_output': Pe_output, 'Pe_input': Pe_input, 'Pe_V': Pe_V, 'Pe_glut': Pe_glut, 'Pe_gaba': Pe_gaba, 'T_step': T_step } scipy.io.savemat(fft_file + 'delta_u' + str(delta_u) + '_' + str(rep), mdict=holder) else: holder = { 'Pe_rate': Pe_ratemon.rate, 'Pe_time': Pe_ratemon.times, 'uee1': uee1, 'uee2': uee2, 'uie1': uie1, 'uie2': uie2 } scipy.io.savemat(rate_file + 'delta_q_' + str(delta_u) + '_' + str(run_num) + 'rep' + str(rep), mdict=holder) bn.clear(erase=True, all=True)
def fft_nostd(qee, run_num, new_connectivity, osc, rep): #bn.seed(int(time.time())) # bn.seed(1412958308+2) bn.reinit_default_clock() bn.defaultclock.dt = 0.5 * bn.ms #============================================================================== # Define constants for the model. #============================================================================== fft_file = './nostd_fft_p20_' rate_file = './nostd_rate_p20_' if osc: T = 8.0 * bn.second else: T = 3.5 * bn.second n_tsteps = T / bn.defaultclock.dt fft_start = 3.0 * bn.second / bn.defaultclock.dt # Time window for the FFT computation #run_num = 10 ro = 1.2 * bn.Hz #============================================================================== # Need to do all others besides 0.2 and 0.5 #============================================================================== print qee print run_num print new_connectivity print rep qie = 0.3 # Fraction of NMDA receptors for e to i connections k = 0.65 Jeo_const = 1.0 #*bn.mV # Base strength of o (external) to e connections Ne = 3200 # number of excitatory neurons Ni = 800 # number of inhibitory neurons No = 2000 # number of external neurons N = Ne + Ni pcon = 0.2 # probability of connection Jee = 5.0 / (Ne * pcon) Jie = 5.0 / (Ne * pcon) Jii = k * 5.0 / (Ni * pcon) Jei = k * 5.0 / (Ni * pcon) Jeo = 1.0 El = -60.0 * bn.mV # leak reversal potential Vreset = -52.0 * bn.mV # reversal potential Vthresh = -40.0 * bn.mV # spiking threshold tref = 2.0 * bn.ms # refractory period te = 20.0 * bn.ms # membrane time constant of excitatory neurons ti = 10.0 * bn.ms # membrane time constant of inhibitory neruons tee_ampa = 10.0 * bn.ms # time const of ampa currents at excitatory neurons tee_nmda = 100.0 * bn.ms # time const of nmda currents at excitatory neurons tie_ampa = 10.0 * bn.ms # time const of ampa currents at inhibitory neurons tie_nmda = 100.0 * bn.ms # time const of nmda currents at inhibitory neurons tii_gaba = 10.0 * bn.ms # time const of GABA currents at inhibitory neurons tei_gaba = 10.0 * bn.ms # time const of GABA currents at excitatory neurons teo_input = 100.0 * bn.ms #============================================================================== # Define model structure #============================================================================== model = ''' dV/dt = (-(V-El)+J_ampa*I_ampa+J_nmda*I_nmda-J_gaba*I_gaba+J_input*I_input+eta+eta_corr)/tm : bn.volt dI_ampa/dt = -I_ampa/t_ampa : bn.volt dI_nmda/dt = -I_nmda/t_nmda : bn.volt dI_gaba/dt = -I_gaba/t_gaba : bn.volt dI_input/dt = (-I_input+mu)/t_input : bn.volt J_ampa : 1 J_nmda : 1 J_gaba : 1 J_input : 1 mu : bn.volt eta : bn.volt eta_corr : bn.volt tm : bn.second t_ampa : bn.second t_nmda : bn.second t_gaba : bn.second t_input : bn.second ''' P_reset = "V=-52*bn.mV" Se_model = ''' we_ampa : bn.volt we_nmda : bn.volt ''' Se_pre = ('I_ampa += we_ampa', 'I_nmda += we_nmda') Si_model = ''' wi_gaba : bn.volt ''' Si_pre = 'I_gaba += wi_gaba' So_model = ''' wo_input : bn.volt ''' So_pre = 'I_input += wo_input' #============================================================================== # Define populations #============================================================================== P = bn.NeuronGroup(N, model, threshold=Vthresh, reset=P_reset, refractory=tref) Pe = P[0:Ne] Pe.tm = te Pe.t_ampa = tee_ampa Pe.t_nmda = tee_nmda Pe.t_gaba = tei_gaba Pe.t_input = teo_input Pe.I_ampa = 0 * bn.mV Pe.I_nmda = 0 * bn.mV Pe.I_gaba = 0 * bn.mV Pe.I_input = 0 * bn.mV Pe.V = (np.random.rand(Pe.V.size) * 12 - 52) * bn.mV Pi = P[Ne:(Ne + Ni)] Pi.tm = ti Pi.t_ampa = tie_ampa Pi.t_nmda = tie_nmda Pi.t_gaba = tii_gaba Pi.t_input = teo_input Pi.I_ampa = 0 * bn.mV Pi.I_nmda = 0 * bn.mV Pi.I_gaba = 0 * bn.mV Pi.I_input = 0 * bn.mV Pi.V = (np.random.rand(Pi.V.size) * 12 - 52) * bn.mV Pe.J_ampa = Jee * (1 - qee) #*SEE1 Pe.J_nmda = Jee * qee #*SEE1 Pi.J_ampa = Jie * (1 - qie) #*SEE1 Pi.J_nmda = Jie * qie #*SEE1 Pe.J_gaba = Jei Pi.J_gaba = Jii Pe.J_input = Jeo Pi.J_input = Jeo #============================================================================== # Define inputs #============================================================================== if osc: Pe.mu = 2.0 * bn.mV holder = np.zeros((n_tsteps, )) t_freq = np.linspace(0, 10, n_tsteps) fo = 0.2 # Smallest frequency in the signal fe = 10.0 # Largest frequency in the signal F = int(fe / 0.2) for m in range(1, F + 1): holder = holder + np.cos(2 * np.pi * m * fo * t_freq - m * (m - 1) * np.pi / F) holder = holder / np.max(holder) Pe.eta = bn.TimedArray(0.0 * bn.mV * holder) #, dt=0.5*bn.ms) Pe.eta_corr = 0 * bn.mV Background_eo = bn.PoissonInput(Pe, N=1000, rate=1.0 * bn.Hz, weight=0.2 * bn.mV, state='I_input') Background_io = bn.PoissonInput(Pi, N=1000, rate=1.05 * bn.Hz, weight=0.2 * bn.mV, state='I_input') Pi.mu = 0 * bn.mV Pi.eta = 0 * bn.mV #, dt=0.5*bn.ms) Pi.eta_corr = 0 * bn.mV Po = bn.PoissonGroup(No, rates=0 * bn.Hz) else: Background_eo = bn.PoissonInput(Pe, N=1000, rate=1.0 * bn.Hz, weight=0.2 * bn.mV, state='I_input') Background_io = bn.PoissonInput(Pi, N=1000, rate=1.05 * bn.Hz, weight=0.2 * bn.mV, state='I_input') holder_pe = np.zeros((n_tsteps, )) time_steps = np.linspace(0, T / bn.second, n_tsteps) holder_pe[time_steps < 0.5] = 0.0 * bn.mV holder_pe[time_steps >= 0.5] = 3.0 * bn.mV # 35.0/Jeo *bn.mV #25 Pe.mu = bn.TimedArray(holder_pe) def firing_function(t, ro): if t > 0.5 * bn.second and t < 3.5 * bn.second: return 0.0 * bn.Hz else: return 0.0 * bn.Hz # Pe.mu = 0*bn.mV Pe.eta = 0 * bn.mV #, dt=0.5*bn.ms) Pi.mu = 0.0 * bn.mV Pi.eta = 0 * bn.mV #, dt=0.5*bn.ms) Po = bn.PoissonGroup(No, rates=lambda t: firing_function(t, ro)) #============================================================================== # Define synapses #============================================================================== See = bn.Synapses(Pe, Pe, model=Se_model, pre=Se_pre) Sie = bn.Synapses(Pe, Pi, model=Se_model, pre=Se_pre) Sei = bn.Synapses(Pi, Pe, model=Si_model, pre=Si_pre) Sii = bn.Synapses(Pi, Pi, model=Si_model, pre=Si_pre) Seo = bn.Synapses(Po, Pe, model=So_model, pre=So_pre) #============================================================================== # Define monitors #============================================================================== Pe_mon_V = bn.StateMonitor(Pe, 'V', timestep=1, record=True) Pe_mon_eta = bn.StateMonitor(Pe, 'eta', timestep=1, record=True) Pe_mon_ampa = bn.StateMonitor(Pe, 'I_ampa', timestep=1, record=True) Pe_mon_nmda = bn.StateMonitor(Pe, 'I_nmda', timestep=1, record=True) Pe_mon_gaba = bn.StateMonitor(Pe, 'I_gaba', timestep=1, record=True) Pe_ratemon = bn.PopulationRateMonitor(Pe, bin=10.0 * bn.ms) #============================================================================== # Define random connections #============================================================================== if new_connectivity: See.connect_random(Pe, Pe, sparseness=pcon) Sie.connect_random(Pe, Pi, sparseness=pcon) Sii.connect_random(Pi, Pi, sparseness=pcon) Sei.connect_random(Pi, Pe, sparseness=pcon) Seo.connect_random(Po, Pe, sparseness=pcon) print 'Saving' See.save_connectivity('./See_connections_nostd_saver_p20' + str(run_num)) Sie.save_connectivity('./Sie_connections_nostd_saver_p20' + str(run_num)) Sii.save_connectivity('./Sii_connections_nostd_saver_p20' + str(run_num)) Sei.save_connectivity('./Sei_connections_nostd_saver_p20' + str(run_num)) Seo.save_connectivity('./Seo_connections_nostd_saver_p20' + str(run_num)) else: print 'Loading' See.load_connectivity('./See_connections_nostd_saver_p20' + str(run_num)) Sie.load_connectivity('./Sie_connections_nostd_saver_p20' + str(run_num)) Sii.load_connectivity('./Sii_connections_nostd_saver_p20' + str(run_num)) Sei.load_connectivity('./Sei_connections_nostd_saver_p20' + str(run_num)) Seo.load_connectivity('./Seo_connections_nostd_saver_p20' + str(run_num)) See.we_ampa = 1.0 * bn.mV / tee_ampa See.we_nmda = 1.0 * bn.mV / tee_nmda Sie.we_ampa = 1.0 * bn.mV / tie_ampa Sie.we_nmda = 1.0 * bn.mV / tie_nmda Sei.wi_gaba = 1.0 * bn.mV / tei_gaba Sii.wi_gaba = 1.0 * bn.mV / tii_gaba Seo.wo_input = 1.0 * bn.mV / teo_input #============================================================================== # Run model #============================================================================== timer = 0 * bn.second t_start = time.time() bn.run(T, report='graphical') timer = timer + T print '-------------------------------------------------------' print 'Time is ' + str(timer) + ' seconds' t_end = time.time() print 'Time to compute last ' +str(T)+' seconds is: ' + \ str(t_end - t_start) + ' seconds' print '-------------------------------------------------------\n' #============================================================================== # Save into a Matlab file #============================================================================== if osc: Pe_output = Pe.J_ampa[0] * Pe_mon_ampa.values + Pe.J_nmda[ 0] * Pe_mon_nmda.values - Pe.J_gaba[0] * Pe_mon_gaba.values Pe_output = Pe_output[:, fft_start:, ] Pe_glut = Pe.J_ampa[0] * Pe_mon_ampa.values + Pe.J_nmda[ 0] * Pe_mon_nmda.values Pe_glut = Pe_glut[:, fft_start:, ] Pe_gaba = Pe.J_gaba[0] * Pe_mon_gaba.values[:, fft_start:, ] Pe_V = Pe_mon_V.values[:, fft_start:, ] Pe_input = Pe_mon_eta[:, fft_start:, ] T_step = bn.defaultclock.dt holder = { 'Pe_output': Pe_output, 'Pe_input': Pe_input, 'Pe_V': Pe_V, 'Pe_glut': Pe_glut, 'Pe_gaba': Pe_gaba, 'T_step': T_step } scipy.io.savemat(fft_file + 'qee' + str(qee) + '_' + str(rep), mdict=holder) else: holder = {'Pe_rate': Pe_ratemon.rate, 'Pe_time': Pe_ratemon.times} scipy.io.savemat(rate_file + 'qee_' + str(qee) + '_' + str(run_num) + 'rep' + str(rep), mdict=holder)