Пример #1
0
def plotSingleTuningCurve(dataPath, gaussianDistance, ax1=None):
    b.rcParams['font.size'] = 20
    averagingWindowSize = 1
    nE = 1600
    ymax = 1
    
    if ax1==None:
        b.figure(figsize=(8,6.5))
        fig_axis = b.subplot(1,1,1)
    else:
        fig_axis = ax1
        b.sca(ax1)
        
    path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/'
    spikeCount = np.load(path + 'spikeCountPerExample.npy')
    spikeCountSingleNeuron = (spikeCount[:,nE/2-2,0])
    numMeasurements = len(spikeCount[:,0,0])
    
    spikeCount = movingaverage(spikeCountSingleNeuron,averagingWindowSize)
    spikeCount /= np.max(spikeCountSingleNeuron)
    b.plot(spikeCount, color='deepskyblue', marker='o', alpha=0.6, linewidth=0, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), 
    fig_axis.set_xticks([0., numMeasurements/2, numMeasurements])
    fig_axis.set_xticklabels(['0', '0.5', '1'])
    fig_axis.set_yticks([0., ymax/2, ymax])
    fig_axis.spines['top'].set_visible(False)
    fig_axis.spines['right'].set_visible(False)
    fig_axis.get_xaxis().tick_bottom()
    fig_axis.get_yaxis().tick_left()
    b.ylabel('Normalized response')
    b.ylim(0,ymax+0.05)

#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))
    if ax1==None:
        b.legend(loc='upper left', fancybox=True, framealpha=0.0)
        b.savefig(dataPath + '/tuningCurveSingleNeuron.png', dpi=300, bbox_inches='tight')
Пример #2
0
def plotActivity(dataPath, gaussianDistances, ax1=None):
    averagingWindowSize = 32
    
    if ax1==None:
        b.figure()
    else:
        b.sca(ax1)
        
    linewidth = 2
    for i,dist in enumerate(gaussianDistances[:]):
        path = dataPath + '/dist'+str(dist)+'/' +'activity/'
        spikeCountTemp = np.load(path + 'spikeCountPerExample.npy')
        spikeCount = spikeCountTemp[25,:,0]#np.loadtxt(path + 'spikeCountAe.txt')
#         spikeCount = np.roll(spikeCount, 400)
        inputSpikeCount = np.loadtxt(path + 'spikeCountXe.txt')
        
        spikeCount = movingaverage(spikeCount,averagingWindowSize)
        inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize)
        if i==len(gaussianDistances)-1:
            b.plot(spikeCount, 'b', alpha=0.6, linewidth=linewidth, label='Max. dist output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), 
            b.plot(inputSpikeCount, 'r', alpha=1., linewidth=linewidth, label='Max. dist. input')
        elif i==0:
            b.plot(spikeCount, 'k--', alpha=0.6, linewidth=linewidth, label='Min. dist output')
            b.plot(inputSpikeCount, 'r--', alpha=1., linewidth=linewidth, label='Min. dist. input')
        else: 
            b.plot(spikeCount, 'k', alpha=0.2+(0.4*float(i)/float(len(gaussianDistances))), linewidth=0.6)
            b.plot(inputSpikeCount, 'r', alpha=0.2+(0.4*float(i)/float(len(gaussianDistances))), linewidth=0.6)
    b.ylim(0,35)

#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))
    if ax1==None:
        b.legend(loc='upper left', fancybox=True, framealpha=0.0)
        b.savefig(dataPath + '/multipleAnglesActivity.png', dpi=300)
Пример #3
0
def plotActivity(dataPath, lower_peaks, ax1=None):
    averagingWindowSize = 32
    if ax1==None:
        b.figure()
    else:
        b.sca(ax1)
    
    for i,gaussian_peak_low in enumerate(lower_peaks[:]):
        path = dataPath + '/peak_'+str(gaussian_peak_low)+'/' +'activity/'
        spikeCount = np.loadtxt(path + 'spikeCountAe.txt')
        inputSpikeCount = np.loadtxt(path + 'spikeCountXe.txt')
        
        spikeCount = movingaverage(spikeCount,averagingWindowSize)
        inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize)
        if i==len(lower_peaks)-1:
            b.plot(spikeCount, 'k', alpha=1., linewidth=3, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), 
            b.plot(inputSpikeCount, 'r', alpha=1., linewidth=3, label='Input')
        elif i==0:
            b.plot(spikeCount, 'k', alpha=0.6, linewidth=3)#
            b.plot(inputSpikeCount, 'r', alpha=0.6, linewidth=3)  
        else: 
            b.plot(spikeCount, 'k', alpha=0.2+(0.4*float(i)/float(len(lower_peaks))), linewidth=0.6)
            b.plot(inputSpikeCount, 'r', alpha=0.2+(0.4*float(i)/float(len(lower_peaks))), linewidth=0.6)

    b.legend()
    b.ylim(0,35)
#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))
    if ax1==None:
        b.savefig(dataPath + 'CueIntegration.png', dpi=900)
def plotActivity(dataPath, inputStrengths, ax1=None):
    averagingWindowSize = 10
    nE = 1600
    ymax = 40
    linewidth = 5
#     b.rcParams['lines.color'] = 'w'
#     b.rcParams['text.color'] = 'w'
#     b.rcParams['xtick.color'] = 'w'
#     b.rcParams['ytick.color'] = 'w'
#     b.rcParams['axes.labelcolor'] = 'w'
#     b.rcParams['axes.edgecolor'] = 'w'
    b.rcParams['font.size'] = 20
    if ax1==None:
        b.figure(figsize=(8,6.5))
        fig_axis = b.subplot(1,1,1)
    else:
        fig_axis = ax1
        b.sca(ax1)


    for i,inputStrength in enumerate(inputStrengths[:]):
        path = dataPath + '/in_'+str(inputStrength)+'/' +'activity/'
        spikeCount = np.loadtxt(path + 'spikeCountAe.txt')
        inputSpikeCount = np.loadtxt(path + 'spikeCountXe.txt')
        
        spikeCount = movingaverage(spikeCount,averagingWindowSize)
        inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize)
        if i==len(inputStrengths)-1:
            b.plot([0], 'w', label=' ')#
            b.plot([0], 'w', label='Avg. input 20 Hz:')#
            b.plot(inputSpikeCount, 'coral', alpha=0.6, linewidth=linewidth, label='Input firing rate')
            b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=linewidth, label='Output firing rate')
        elif i==1:
            b.plot([0], 'w', label=' ')#
            b.plot([0], 'w', label='Avg. input 6 Hz:')#
            b.plot(inputSpikeCount, 'red', alpha=1., linewidth=linewidth,  label='Input firing rate')
            b.plot(spikeCount, 'blue', alpha=0.6, linewidth=linewidth, label='Output firing rate')
        elif i==0:
            b.plot([0], 'w', label='Avg. input 2 Hz:')#
            b.plot(inputSpikeCount, 'darkred', alpha=1., linewidth=linewidth, label='Input firing rate')
            b.plot(spikeCount, 'darkblue', alpha=1.0, linewidth=linewidth, label='Output firing rate')
        else: 
            b.plot(spikeCount, 'k', alpha=0.2+(0.4*float(i)/float(len(inputStrengths))), linewidth=0.6)
    b.legend(loc='upper right', fancybox=True, framealpha=0.0, fontsize = 17)




    handles, labels = fig_axis.get_legend_handles_labels()
    # fig_axis.legend(handles[::-1], labels[::-1], loc='upper left', fancybox=True, framealpha=0.0)
    fig_axis.set_xticks([0., nE/2, nE])
    fig_axis.set_yticks([0., ymax/2, ymax])
    fig_axis.spines['top'].set_visible(False)
    fig_axis.spines['right'].set_visible(False)
    fig_axis.get_xaxis().tick_bottom()
    fig_axis.get_yaxis().tick_left()
    b.xlabel('Neuron number (resorted)')
    b.ylabel('Firing rate [Hz]')
    b.ylim(0,ymax)
Пример #5
0
def Plot(M, Mu, Mv, number):
    br.plot(211)
    #pudb.set_trace()
    br.plot(Mu.times / br.ms, Mu[0] / br.mvolt, label='u')
    br.plot((Mv.times) / br.ms, 2000 * (Mv[0] / br.mvolt) - 58000, label='v')
    br.plot((M.times) / br.ms, 2000 * (M[0] / br.mvolt) - 58000, label='ge')
    #br.plot(Mv.times/br.ms,Mv[
    br.legend()
    br.show()
def plotActivity(dataPath, inputStrengths, ax1=None):
    averagingWindowSize = 1
    nE = 1600
    ymax = 30
#     b.rcParams['lines.color'] = 'w'
#     b.rcParams['text.color'] = 'w'
#     b.rcParams['xtick.color'] = 'w'
#     b.rcParams['ytick.color'] = 'w'
#     b.rcParams['axes.labelcolor'] = 'w'
#     b.rcParams['axes.edgecolor'] = 'w'
    b.rcParams['font.size'] = 20
    if ax1==None:
        b.figure(figsize=(8,6.5))
        fig_axis = b.subplot(1,1,1)
    else:
        fig_axis = ax1
        b.sca(ax1)
    for i,inputStrength in enumerate(inputStrengths[:]):
        path = dataPath + '/peak_'+str(inputStrength)+'/' +'activity/'
        spikeCount = np.loadtxt(path + 'spikeCountAe.txt')
        inputSpikeCount = np.loadtxt(path + 'spikeCountXe.txt')
        
        spikeCount = movingaverage(spikeCount,averagingWindowSize)
        inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize)
        if i==len(inputStrengths)-1:
            b.plot(inputSpikeCount, 'r', alpha=1., linewidth=3, label='Input')
            b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=3, label='Output')#alpha=0.5+(0.5*float(i)/float(len(numPeaks))), 
#         elif i==0:
#             b.plot(spikeCount, 'k--', alpha=1., linewidth=3)#
#             b.plot(inputSpikeCount, 'r--', alpha=1., linewidth=3)  
        else: 
            b.plot(spikeCount, 'k', alpha=0.2+(0.4*float(i)/float(len(inputStrength))), linewidth=0.6)
            b.plot(inputSpikeCount, 'r', alpha=0.2+(0.4*float(i)/float(len(inputStrength))), linewidth=0.6)
    fig_axis.set_xticks([0., nE/2, nE])
    fig_axis.set_xticklabels(['0', '0.5', '1'])
    fig_axis.set_yticks([0., ymax/2, ymax])
    fig_axis.spines['top'].set_visible(False)
    fig_axis.spines['right'].set_visible(False)
    fig_axis.get_xaxis().tick_bottom()
    fig_axis.get_yaxis().tick_left()
    b.ylabel('Firing Rate [Hz]')

    b.ylim(0,ymax)
#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))

    if ax1==None:
        b.xlabel('Neuron number (resorted)')
        b.legend(fancybox=True, framealpha=0.0, loc='upper left')
        b.savefig(dataPath + 'CueIntegration_single.png', dpi=900, transparent=True)
Пример #7
0
def plotPopulationTuningCurve(dataPath, gaussianDistance, ax1=None):
    b.rcParams['font.size'] = 20
    averagingWindowSize = 1
    nE = 1600
    ymax = 1
    
    if ax1==None:
        b.figure(figsize=(8,6.5))
        fig_axis = b.subplot(1,1,1)
    else:
        fig_axis = ax1
        b.sca(ax1)
        
    
    path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/'
    spikeCount = np.load(path + 'spikeCountPerExample.npy')
    numMeasurements = len(spikeCount[:,0,0])
    measurementSpace = np.arange(numMeasurements)
    populationSpikeCount = np.zeros((numMeasurements))
    for i in xrange(nE):
        populationSpikeCount += np.roll(spikeCount[:,i,0], int(-1.*i/nE*numMeasurements+ numMeasurements/2))
    populationSpikeCount = movingaverage(populationSpikeCount,averagingWindowSize)
    populationSpikeCount /= np.max(populationSpikeCount)
    if gaussianDistance==0.:
        mean = sum(measurementSpace*populationSpikeCount)/numMeasurements                   #note this correction
        sigma = sum(populationSpikeCount*(measurementSpace-mean)**2)/numMeasurements        #note this correction
        popt, _ = curve_fit(gaus,measurementSpace,populationSpikeCount,p0=[1,mean,sigma])
        print 'Gaussian amplitude: ', popt[0], ', mean: ', popt[1], ', std.: ', popt[2]**2
        
        b.plot(measurementSpace,gaus(measurementSpace,*popt),'k')
    
    b.plot(populationSpikeCount, color='deepskyblue', marker='o', alpha=0.6, linewidth=0, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), 
    fig_axis.set_xticks([0., numMeasurements/2, numMeasurements])
    fig_axis.set_xticklabels(['0', '0.5', '1'])
    fig_axis.set_yticks([0., ymax/2, ymax])
    fig_axis.spines['top'].set_visible(False)
    fig_axis.spines['right'].set_visible(False)
    fig_axis.get_xaxis().tick_bottom()
    fig_axis.get_yaxis().tick_left()
#     b.ylabel('Normalized response')
    b.ylim(0,ymax+0.05)

#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))
    if ax1==None:
        b.legend(loc='upper left', fancybox=True, framealpha=0.0)
        b.savefig(dataPath + '/tuningCurvePopulation' + str(gaussianDistance) + '.png', dpi=300, bbox_inches='tight')
Пример #8
0
def plotActivity(dataPath, ax1=None):
    averagingWindowSize = 1
    nE = 1600
    ymax = 40
#     b.rcParams['lines.color'] = 'w'
#     b.rcParams['text.color'] = 'w'
#     b.rcParams['xtick.color'] = 'w'
#     b.rcParams['ytick.color'] = 'w'
#     b.rcParams['axes.labelcolor'] = 'w'
#     b.rcParams['axes.edgecolor'] = 'w'
    b.rcParams['font.size'] = 20
    if ax1==None:
        fig = b.figure(figsize=(8,6.5))
        fig_axis=b.subplot(1,1,1)
    else:
        fig_axis = ax1
        b.sca(ax1)
    path = dataPath + 'activity/'
    spikeCount = np.loadtxt(path + 'spikeCountCe.txt')
    popVecs = np.loadtxt(path + 'popVecs1.txt')
    desiredResult = (popVecs[0] + popVecs[1])%1.*1600
    resultMonitor = np.loadtxt(path + 'resultPopVecs1.txt')
    actualResult = resultMonitor[2]*1600
    ax1.axvline(desiredResult, color='r', linewidth=3, ymax=ymax, label='Desired result')
    ax1.axvline(actualResult, color='blue', linewidth=3, ymax=ymax, label='Population vector')
    
    print 'desiredResult', desiredResult, ', actual result', actualResult
#     spikeCount = np.roll(spikeCount, 800+int(-1*desiredResult))
    spikeCount = movingaverage(spikeCount,averagingWindowSize)
    b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=3, label='Population activity')
    fig_axis.set_xticks([0., nE/2, nE])
    fig_axis.set_xticklabels(['0', '0.5', '1'])
    fig_axis.set_yticks([0., ymax/2, ymax])
    fig_axis.spines['top'].set_visible(False)
    fig_axis.spines['right'].set_visible(False)
    fig_axis.get_xaxis().tick_bottom()
    fig_axis.get_yaxis().tick_left()
    b.ylabel('Firing Rate [Hz]')

    b.ylim(0,ymax)
    b.legend(fancybox=True, framealpha=0.0, loc='upper left')
#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))
    if ax1==None:
        b.xlabel('Neuron number (resorted)')
        b.savefig(dataPath + 'SignalRestoration.png', dpi=900, transparent=True)
Пример #9
0
def plotSingleActivity(dataPath, gaussianDistance, ax1=None):
    b.rcParams['font.size'] = 20
    averagingWindowSize = 30
    nE = 1600
    ymax = 1
    
    if ax1==None:
        b.figure(figsize=(8,6.5))
        fig_axis = b.subplot(1,1,1)
    else:
        fig_axis = ax1
        b.sca(ax1)
        
    linewidth = 3
    path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/'
    spikeCountTemp = np.load(path + 'spikeCountPerExample.npy')
    spikeCount = spikeCountTemp[25,:,0]#np.loadtxt(path + 'spikeCountAe.txt')
#     spikeCount = np.roll(spikeCount, 400)
    inputSpikeCount = np.roll(np.loadtxt(path + 'spikeCountXe.txt'), 400)
    
    spikeCount = movingaverage(spikeCount,averagingWindowSize)
    spikeCount /= np.max(spikeCount)
    inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize)
    inputSpikeCount /= np.max(inputSpikeCount)
    b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=linewidth, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), 
    b.plot(inputSpikeCount, 'r', alpha=1., linewidth=linewidth, label='Input')
    fig_axis.set_xticks([0., nE/2, nE])
    fig_axis.set_xticklabels(['0', '0.5', '1'])
    fig_axis.set_yticks([0., ymax/2, ymax])
    fig_axis.spines['top'].set_visible(False)
    fig_axis.spines['right'].set_visible(False)
    fig_axis.get_xaxis().tick_bottom()
    fig_axis.get_yaxis().tick_left()
    b.ylabel('Normalized response')
    b.ylim(0,ymax)

#         b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount)))
    if ax1==None:
        b.legend(loc='upper left', fancybox=True, framealpha=0.0)
        b.savefig(dataPath + '/multipleAnglesSingleActivity.png', dpi=300)
Пример #10
0
        
if spike_counters:
    b.figure(fig_num)
    fig_num += 1
    for i, name in enumerate(spike_counters):
        b.subplot(len(spike_counters), 1, i)
        b.plot(spike_counters['Ae'].count[:])
        b.title('spike count of population ' + name)

if state_monitors:
    b.figure(fig_num)
    fig_num += 1
    for i, name in enumerate(state_monitors):
        b.plot(state_monitors[name].times/b.second, state_monitors[name]['v'][0], label = name + ' v 0')
    #     plot(state_monitors[name].times/second, state_monitors[name]['v'][5], label = name + ' 5')
        b.legend()
        b.title('membrane voltages of population ' + name)
    

    b.figure(fig_num)
    fig_num += 1
    for i, name in enumerate(state_monitors):
        b.plot(state_monitors[name].times/b.second, state_monitors[name]['ge'][0], label = name + ' ge 0')
        b.plot(state_monitors[name].times/b.second, state_monitors[name]['gi'][0], label = name + ' gi 0')
    #     plot(state_monitors[name].times/second, state_monitors[name]['v'][5], label = name + ' 5')
        b.legend()
        b.title('conductances of population ' + name)

plot_weights = [
#                 'XeAe', 
#                 'XeAi', 
Пример #11
0
    def plotResults(self):
        #------------------------------------------------------------------------------ 
        # plot results
        #------------------------------------------------------------------------------ 
        if self.rateMonitors:
            b.figure()
            for i, name in enumerate(self.rateMonitors):
                b.subplot(len(self.rateMonitors), 1, i)
                b.plot(self.rateMonitors[name].times/b.second, self.rateMonitors[name].rate, '.')
                b.title('rates of population ' + name)
            
        if self.spikeMonitors:
            b.figure()
            for i, name in enumerate(self.spikeMonitors):
                b.subplot(len(self.spikeMonitors), 1, i)
                b.raster_plot(self.spikeMonitors[name])
                b.title('spikes of population ' + name)
                if name=='Ce':
                    timePoints = np.linspace(0+(self.singleExampleTime+self.restingTime)/(2*b.second)*1000, 
                                             self.runtime/b.second*1000-(self.singleExampleTime+self.restingTime)/(2*b.second)*1000, 
                                             self.numExamples)
                    b.plot(timePoints, self.resultMonitor[:,0]*self.nE, 'g')
                    b.plot(timePoints, self.resultMonitor[:,1]*self.nE, 'r')
        
        if self.stateMonitors:
            b.figure()
            for i, name in enumerate(self.stateMonitors):
                b.plot(self.stateMonitors[name].times/b.second, self.stateMonitors[name]['v'][0], label = name + ' v 0')
                b.legend()
                b.title('membrane voltages of population ' + name)
            
        
            b.figure()
            for i, name in enumerate(self.stateMonitors):
                b.plot(self.stateMonitors[name].times/b.second, self.stateMonitors[name]['ge'][0], label = name + ' v 0')
                b.legend()
                b.title('conductances of population ' + name)
        
        plotWeights = [
        #                 'XeAe', 
        #                 'XeAi', 
        #                 'AeAe', 
        #                 'AeAi', 
        #                 'AiAe', 
        #                 'AiAi', 
        #                'BeBe', 
        #                'BeBi', 
        #                'BiBe', 
        #                'BiBi', 
        #                'CeCe', 
        #                'CeCi', 
                        'CiCe', 
        #                'CiCi', 
        #                'HeHe', 
        #                'HeHi', 
        #                'HiHe', 
        #                'HiHi', 
                        'AeHe',
        #                 'BeHe',
        #                 'CeHe',
                        'HeAe',
        #                 'HeBe',
        #                 'HeCe',
                       ]
        
        for name in plotWeights:
            b.figure()
#             my_cmap = matplotlib.colors.LinearSegmentedColormap.from_list('own2',['#f4f4f4', '#000000'])
#             my_cmap2 = matplotlib.colors.LinearSegmentedColormap.from_list('own2',['#000000', '#f4f4f4'])
            if name[1]=='e':
                nSrc = self.nE
            else:
                nSrc = self.nI
            if name[3]=='e':
                nTgt = self.nE
            else:
                nTgt = self.nI
                
            w_post = np.zeros((nSrc, nTgt))
            connMatrix = self.connections[name][:]
            for i in xrange(nSrc):
                w_post[i, connMatrix.rowj[i]] = connMatrix.rowdata[i]
            im2 = b.imshow(w_post, interpolation="nearest", vmin = 0, cmap=cm.get_cmap('gist_ncar')) #my_cmap
            b.colorbar(im2)
            b.title('weights of connection' + name)
            
            
        if self.plotError:
            error = np.abs(self.resultMonitor[:,1] - self.resultMonitor[:,0])
            correctionIdxs = np.where(error > 0.5)[0]
            correctedError = [1 - error[i] if (i in correctionIdxs) else error[i] for i in xrange(len(error))]
            correctedErrorSum = np.average(correctedError)
                 
            b.figure()
            b.scatter(self.resultMonitor[:,1], self.resultMonitor[:,0], c=range(len(error)), cmap=cm.get_cmap('gray'))
            b.title('Error: ' + str(correctedErrorSum))
            b.xlabel('Desired activity')
            b.ylabel('Population activity')
             
            b.figure()
            error = np.abs(self.resultMonitor[:,1] - self.resultMonitor[:,0])
            correctionIdxs = np.where(error > 0.5)[0]
            correctedError = [1 - error[i] if (i in correctionIdxs) else error[i] for i in xrange(len(error))]
            correctedErrorSum = np.average(correctedError)
            b.scatter(self.resultMonitor[:,1], self.resultMonitor[:,0], c=self.resultMonitor[:,2], cmap=cm.get_cmap('gray'))
            b.title('Error: ' + str(correctedErrorSum))
            b.xlabel('Desired activity')
            b.ylabel('Population activity')
        
        b.ioff()
        b.show()