def plotSingleTuningCurve(dataPath, gaussianDistance, ax1=None): b.rcParams['font.size'] = 20 averagingWindowSize = 1 nE = 1600 ymax = 1 if ax1==None: b.figure(figsize=(8,6.5)) fig_axis = b.subplot(1,1,1) else: fig_axis = ax1 b.sca(ax1) path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/' spikeCount = np.load(path + 'spikeCountPerExample.npy') spikeCountSingleNeuron = (spikeCount[:,nE/2-2,0]) numMeasurements = len(spikeCount[:,0,0]) spikeCount = movingaverage(spikeCountSingleNeuron,averagingWindowSize) spikeCount /= np.max(spikeCountSingleNeuron) b.plot(spikeCount, color='deepskyblue', marker='o', alpha=0.6, linewidth=0, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), fig_axis.set_xticks([0., numMeasurements/2, numMeasurements]) fig_axis.set_xticklabels(['0', '0.5', '1']) fig_axis.set_yticks([0., ymax/2, ymax]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() b.ylabel('Normalized response') b.ylim(0,ymax+0.05) # b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount))) if ax1==None: b.legend(loc='upper left', fancybox=True, framealpha=0.0) b.savefig(dataPath + '/tuningCurveSingleNeuron.png', dpi=300, bbox_inches='tight')
def plotActivity(dataPath, inputStrengths, ax1=None): averagingWindowSize = 10 nE = 1600 ymax = 40 linewidth = 5 # b.rcParams['lines.color'] = 'w' # b.rcParams['text.color'] = 'w' # b.rcParams['xtick.color'] = 'w' # b.rcParams['ytick.color'] = 'w' # b.rcParams['axes.labelcolor'] = 'w' # b.rcParams['axes.edgecolor'] = 'w' b.rcParams['font.size'] = 20 if ax1==None: b.figure(figsize=(8,6.5)) fig_axis = b.subplot(1,1,1) else: fig_axis = ax1 b.sca(ax1) for i,inputStrength in enumerate(inputStrengths[:]): path = dataPath + '/in_'+str(inputStrength)+'/' +'activity/' spikeCount = np.loadtxt(path + 'spikeCountAe.txt') inputSpikeCount = np.loadtxt(path + 'spikeCountXe.txt') spikeCount = movingaverage(spikeCount,averagingWindowSize) inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize) if i==len(inputStrengths)-1: b.plot([0], 'w', label=' ')# b.plot([0], 'w', label='Avg. input 20 Hz:')# b.plot(inputSpikeCount, 'coral', alpha=0.6, linewidth=linewidth, label='Input firing rate') b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=linewidth, label='Output firing rate') elif i==1: b.plot([0], 'w', label=' ')# b.plot([0], 'w', label='Avg. input 6 Hz:')# b.plot(inputSpikeCount, 'red', alpha=1., linewidth=linewidth, label='Input firing rate') b.plot(spikeCount, 'blue', alpha=0.6, linewidth=linewidth, label='Output firing rate') elif i==0: b.plot([0], 'w', label='Avg. input 2 Hz:')# b.plot(inputSpikeCount, 'darkred', alpha=1., linewidth=linewidth, label='Input firing rate') b.plot(spikeCount, 'darkblue', alpha=1.0, linewidth=linewidth, label='Output firing rate') else: b.plot(spikeCount, 'k', alpha=0.2+(0.4*float(i)/float(len(inputStrengths))), linewidth=0.6) b.legend(loc='upper right', fancybox=True, framealpha=0.0, fontsize = 17) handles, labels = fig_axis.get_legend_handles_labels() # fig_axis.legend(handles[::-1], labels[::-1], loc='upper left', fancybox=True, framealpha=0.0) fig_axis.set_xticks([0., nE/2, nE]) fig_axis.set_yticks([0., ymax/2, ymax]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() b.xlabel('Neuron number (resorted)') b.ylabel('Firing rate [Hz]') b.ylim(0,ymax)
def plotActivity(dataPath, inputStrengths, ax1=None): averagingWindowSize = 1 nE = 1600 ymax = 30 # b.rcParams['lines.color'] = 'w' # b.rcParams['text.color'] = 'w' # b.rcParams['xtick.color'] = 'w' # b.rcParams['ytick.color'] = 'w' # b.rcParams['axes.labelcolor'] = 'w' # b.rcParams['axes.edgecolor'] = 'w' b.rcParams['font.size'] = 20 if ax1==None: b.figure(figsize=(8,6.5)) fig_axis = b.subplot(1,1,1) else: fig_axis = ax1 b.sca(ax1) for i,inputStrength in enumerate(inputStrengths[:]): path = dataPath + '/peak_'+str(inputStrength)+'/' +'activity/' spikeCount = np.loadtxt(path + 'spikeCountAe.txt') inputSpikeCount = np.loadtxt(path + 'spikeCountXe.txt') spikeCount = movingaverage(spikeCount,averagingWindowSize) inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize) if i==len(inputStrengths)-1: b.plot(inputSpikeCount, 'r', alpha=1., linewidth=3, label='Input') b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=3, label='Output')#alpha=0.5+(0.5*float(i)/float(len(numPeaks))), # elif i==0: # b.plot(spikeCount, 'k--', alpha=1., linewidth=3)# # b.plot(inputSpikeCount, 'r--', alpha=1., linewidth=3) else: b.plot(spikeCount, 'k', alpha=0.2+(0.4*float(i)/float(len(inputStrength))), linewidth=0.6) b.plot(inputSpikeCount, 'r', alpha=0.2+(0.4*float(i)/float(len(inputStrength))), linewidth=0.6) fig_axis.set_xticks([0., nE/2, nE]) fig_axis.set_xticklabels(['0', '0.5', '1']) fig_axis.set_yticks([0., ymax/2, ymax]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() b.ylabel('Firing Rate [Hz]') b.ylim(0,ymax) # b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount))) if ax1==None: b.xlabel('Neuron number (resorted)') b.legend(fancybox=True, framealpha=0.0, loc='upper left') b.savefig(dataPath + 'CueIntegration_single.png', dpi=900, transparent=True)
def plotPopulationTuningCurve(dataPath, gaussianDistance, ax1=None): b.rcParams['font.size'] = 20 averagingWindowSize = 1 nE = 1600 ymax = 1 if ax1==None: b.figure(figsize=(8,6.5)) fig_axis = b.subplot(1,1,1) else: fig_axis = ax1 b.sca(ax1) path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/' spikeCount = np.load(path + 'spikeCountPerExample.npy') numMeasurements = len(spikeCount[:,0,0]) measurementSpace = np.arange(numMeasurements) populationSpikeCount = np.zeros((numMeasurements)) for i in xrange(nE): populationSpikeCount += np.roll(spikeCount[:,i,0], int(-1.*i/nE*numMeasurements+ numMeasurements/2)) populationSpikeCount = movingaverage(populationSpikeCount,averagingWindowSize) populationSpikeCount /= np.max(populationSpikeCount) if gaussianDistance==0.: mean = sum(measurementSpace*populationSpikeCount)/numMeasurements #note this correction sigma = sum(populationSpikeCount*(measurementSpace-mean)**2)/numMeasurements #note this correction popt, _ = curve_fit(gaus,measurementSpace,populationSpikeCount,p0=[1,mean,sigma]) print 'Gaussian amplitude: ', popt[0], ', mean: ', popt[1], ', std.: ', popt[2]**2 b.plot(measurementSpace,gaus(measurementSpace,*popt),'k') b.plot(populationSpikeCount, color='deepskyblue', marker='o', alpha=0.6, linewidth=0, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), fig_axis.set_xticks([0., numMeasurements/2, numMeasurements]) fig_axis.set_xticklabels(['0', '0.5', '1']) fig_axis.set_yticks([0., ymax/2, ymax]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() # b.ylabel('Normalized response') b.ylim(0,ymax+0.05) # b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount))) if ax1==None: b.legend(loc='upper left', fancybox=True, framealpha=0.0) b.savefig(dataPath + '/tuningCurvePopulation' + str(gaussianDistance) + '.png', dpi=300, bbox_inches='tight')
def plotActivity(dataPath, ax1=None): averagingWindowSize = 1 nE = 1600 ymax = 40 # b.rcParams['lines.color'] = 'w' # b.rcParams['text.color'] = 'w' # b.rcParams['xtick.color'] = 'w' # b.rcParams['ytick.color'] = 'w' # b.rcParams['axes.labelcolor'] = 'w' # b.rcParams['axes.edgecolor'] = 'w' b.rcParams['font.size'] = 20 if ax1==None: fig = b.figure(figsize=(8,6.5)) fig_axis=b.subplot(1,1,1) else: fig_axis = ax1 b.sca(ax1) path = dataPath + 'activity/' spikeCount = np.loadtxt(path + 'spikeCountCe.txt') popVecs = np.loadtxt(path + 'popVecs1.txt') desiredResult = (popVecs[0] + popVecs[1])%1.*1600 resultMonitor = np.loadtxt(path + 'resultPopVecs1.txt') actualResult = resultMonitor[2]*1600 ax1.axvline(desiredResult, color='r', linewidth=3, ymax=ymax, label='Desired result') ax1.axvline(actualResult, color='blue', linewidth=3, ymax=ymax, label='Population vector') print 'desiredResult', desiredResult, ', actual result', actualResult # spikeCount = np.roll(spikeCount, 800+int(-1*desiredResult)) spikeCount = movingaverage(spikeCount,averagingWindowSize) b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=3, label='Population activity') fig_axis.set_xticks([0., nE/2, nE]) fig_axis.set_xticklabels(['0', '0.5', '1']) fig_axis.set_yticks([0., ymax/2, ymax]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() b.ylabel('Firing Rate [Hz]') b.ylim(0,ymax) b.legend(fancybox=True, framealpha=0.0, loc='upper left') # b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount))) if ax1==None: b.xlabel('Neuron number (resorted)') b.savefig(dataPath + 'SignalRestoration.png', dpi=900, transparent=True)
def plotSingleActivity(dataPath, gaussianDistance, ax1=None): b.rcParams['font.size'] = 20 averagingWindowSize = 30 nE = 1600 ymax = 1 if ax1==None: b.figure(figsize=(8,6.5)) fig_axis = b.subplot(1,1,1) else: fig_axis = ax1 b.sca(ax1) linewidth = 3 path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/' spikeCountTemp = np.load(path + 'spikeCountPerExample.npy') spikeCount = spikeCountTemp[25,:,0]#np.loadtxt(path + 'spikeCountAe.txt') # spikeCount = np.roll(spikeCount, 400) inputSpikeCount = np.roll(np.loadtxt(path + 'spikeCountXe.txt'), 400) spikeCount = movingaverage(spikeCount,averagingWindowSize) spikeCount /= np.max(spikeCount) inputSpikeCount = movingaverage(inputSpikeCount,averagingWindowSize) inputSpikeCount /= np.max(inputSpikeCount) b.plot(spikeCount, 'deepskyblue', alpha=0.6, linewidth=linewidth, label='Output')#alpha=0.5+(0.5*float(i)/float(len(lower_peaks))), b.plot(inputSpikeCount, 'r', alpha=1., linewidth=linewidth, label='Input') fig_axis.set_xticks([0., nE/2, nE]) fig_axis.set_xticklabels(['0', '0.5', '1']) fig_axis.set_yticks([0., ymax/2, ymax]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() b.ylabel('Normalized response') b.ylim(0,ymax) # b.title('spikes:' + str(sum(spikeCount)) + ', pop. value: ' + str(computePopVector(spikeCount))) if ax1==None: b.legend(loc='upper left', fancybox=True, framealpha=0.0) b.savefig(dataPath + '/multipleAnglesSingleActivity.png', dpi=300)
def save_and_plot_results(): global fig_num print '...saving results' if not test_mode: save_theta() if not test_mode: save_connections() else: np.save(top_level_path + 'activity/conv_patch_connectivity_activity/results_' + str(num_examples) + '_' + ending, result_monitor) np.save(top_level_path + 'activity/conv_patch_connectivity_activity/input_numbers_' + str(num_examples) + '_' + ending, input_numbers) if do_plot: if rate_monitors: b.figure(fig_num) fig_num += 1 for i, name in enumerate(rate_monitors): b.subplot(len(rate_monitors), 1, i + 1) b.plot(rate_monitors[name].times / b.second, rate_monitors[name].rate, '.') b.title('Rates of population ' + name) if spike_monitors: b.figure(fig_num) fig_num += 1 for i, name in enumerate(spike_monitors): b.subplot(len(spike_monitors), 1, i + 1) b.raster_plot(spike_monitors[name]) b.title('Spikes of population ' + name) if spike_counters: b.figure(fig_num) fig_num += 1 for i, name in enumerate(spike_counters): b.subplot(len(spike_counters), 1, i + 1) b.plot(np.asarray(spike_counters['Ae'].count[:])) b.title('Spike count of population ' + name) plot_2d_input_weights() plot_patch_weights() b.ioff() b.show()
class ConvolutionalSpikingNN(object): ''' Object which represents a convolutional spiking neural network. ''' def __init__(mode, connectivity, weight_dependence, post_pre, conv_size, conv_stride, conv_features, weight_sharing, lattice_structure, random_inhibition_prob, top_percent): ''' Network initialization. ''' # setting input parameters this.mode = mode this.connectivity = connectivity this.weight_dependence = weight_dependence this.post_pre = post_pre this.conv_size = conv_size this.conv_features = conv_features this.weight_sharing = weight_sharing this.lattice_structure = lattice_structure this.random_inhibition_prob = random_inhibition_prob # load training or testing data if mode == 'train': start = time.time() this.data = get_labeled_data(MNIST_data_path + 'training') end = time.time() print 'time needed to load training set:', end - start else: start = time.time() this.data = get_labeled_data(MNIST_data_path + 'testing', bTrain = False) end = time.time() print 'time needed to load test set:', end - start # set parameters for simulation based on train / test mode if test_mode: weight_path = top_level_path + 'weights/conv_patch_connectivity_weights/' this.num_examples = 10000 * 1 this.do_plot_performance = False ee_STDP_on = False else: weight_path = top_level_path + 'random/conv_patch_connectivity_random/' this.num_examples = 60000 * 1 this.do_plot_performance = True ee_STDP_on = True # plotting or not do_plot = True # number of inputs to the network this.n_input = 784 this.n_input_sqrt = int(math.sqrt(n_input)) # number of neurons parameters this.n_e = ((n_input_sqrt - conv_size) / conv_stride + 1) ** 2 this.n_e_total = n_e * conv_features this.n_e_sqrt = int(math.sqrt(n_e)) this.n_i = n_e this.conv_features_sqrt = int(math.sqrt(conv_features)) # time (in seconds) per data example presentation and rest period in between, used to calculate total runtime this.single_example_time = 0.35 * b.second this.resting_time = 0.15 * b.second runtime = num_examples * (single_example_time + resting_time) # set the update interval if test_mode: this.update_interval = num_examples else: this.update_interval = 100 # rest potential parameters, reset potential parameters, threshold potential parameters, and refractory periods v_rest_e, v_rest_i = -65. * b.mV, -60. * b.mV v_reset_e, v_reset_i = -65. * b.mV, -45. * b.mV v_thresh_e, v_thresh_i = -52. * b.mV, -40. * b.mV refrac_e, refrac_i = 5. * b.ms, 2. * b.ms # dictionaries for weights and delays weight, delay = {}, {} # populations, connections, saved connections, etc. input_population_names = [ 'X' ] population_names = [ 'A' ] input_connection_names = [ 'XA' ] save_conns = [ 'XeAe', 'AeAe' ] # weird and bad names for variables, I think input_conn_names = [ 'ee_input' ] recurrent_conn_names = [ 'ei', 'ie', 'ee' ] # setting weight, delay, and intensity parameters weight['ee_input'] = (conv_size ** 2) * 0.175 delay['ee_input'] = (0 * b.ms, 10 * b.ms) delay['ei_input'] = (0 * b.ms, 5 * b.ms) input_intensity = start_input_intensity = 2.0 # time constants, learning rates, max weights, weight dependence, etc. tc_pre_ee, tc_post_ee = 20 * b.ms, 20 * b.ms nu_ee_pre, nu_ee_post = 0.0001, 0.01 wmax_ee = 1.0 exp_ee_post = exp_ee_pre = 0.2 w_mu_pre, w_mu_post = 0.2, 0.2 # setting up differential equations (depending on train / test mode) if test_mode: scr_e = 'v = v_reset_e; timer = 0*ms' else: tc_theta = 1e7 * b.ms theta_plus_e = 0.05 * b.mV scr_e = 'v = v_reset_e; theta += theta_plus_e; timer = 0*ms' offset = 20.0 * b.mV v_thresh_e = '(v>(theta - offset + ' + str(v_thresh_e) + ')) * (timer>refrac_e)' # equations for neurons neuron_eqs_e = ''' dv/dt = ((v_rest_e - v) + (I_synE + I_synI) / nS) / (100 * ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-100.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' if test_mode: neuron_eqs_e += '\n theta :volt' else: neuron_eqs_e += '\n dtheta/dt = -theta / (tc_theta) : volt' neuron_eqs_e += '\n dtimer/dt = 100.0 : ms' neuron_eqs_i = ''' dv/dt = ((v_rest_i - v) + (I_synE + I_synI) / nS) / (10*ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-85.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' # creating dictionaries for various objects this.neuron_groups = {} this.input_groups = {} this.connections = {} this.input_connections = {} this.stdp_methods = {} this.rate_monitors = {} this.spike_monitors = {} this.spike_counters = {} # creating excitatory, inhibitory populations this.neuron_groups['e'] = b.NeuronGroup(n_e_total, neuron_eqs_e, threshold=v_thresh_e, refractory=refrac_e, reset=scr_e, compile=True, freeze=True) this.neuron_groups['i'] = b.NeuronGroup(n_e_total, neuron_eqs_i, threshold=v_thresh_i, refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) # creating subpopulations of excitatory, inhibitory neurons for name in population_names: print '...creating neuron group:', name # get a subgroup of size 'n_e' from all exc neuron_groups[name + 'e'] = neuron_groups['e'].subgroup(conv_features * n_e) # get a subgroup of size 'n_i' from the inhibitory layer neuron_groups[name + 'i'] = neuron_groups['i'].subgroup(conv_features * n_e) # start the membrane potentials of these groups 40mV below their resting potentials neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...creating recurrent connections' for name in population_names: # if we're in test mode / using some stored weights if mode == 'test' or weight_path[-8:] == 'weights/conv_patch_connectivity_weights/': # load up adaptive threshold parameters neuron_groups['e'].theta = np.load(weight_path + 'theta_A' + '_' + ending +'.npy') else: # otherwise, set the adaptive additive threshold parameter at 20mV neuron_groups['e'].theta = np.ones((n_e_total)) * 20.0 * b.mV for conn_type in recurrent_conn_names: if conn_type == 'ei': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for n in xrange(n_e): connections[conn_name][feature * n_e + n, feature * n_e + n] = 10.4 elif conn_type == 'ie': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: for n in xrange(n_e): connections[conn_name][feature * n_e + n, other_feature * n_e + n] = 17.4 if random_inhibition_prob != 0.0: for feature in xrange(conv_features): for other_feature in xrange(conv_features): for n_this in xrange(n_e): for n_other in xrange(n_e): if n_this != n_other: if b.random() < random_inhibition_prob: connections[conn_name][feature * n_e + n_this, other_feature * n_e + n_other] = 17.4 elif conn_type == 'ee': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # get weights from file if we are in test mode if mode == 'test': weight_matrix = get_matrix_from_file(weight_path + conn_name + '_' + ending + '.npy', conv_features * n_e, conv_features * n_e) # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection if connectivity == 'all': for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: for this_n in xrange(n_e): for other_n in xrange(n_e): if is_lattice_connection(n_e_sqrt, this_n, other_n): if mode == 'test': connections[conn_name][feature * n_e + this_n, other_feature * n_e + other_n] = weight_matrix[feature * n_e + this_n, other_feature * n_e + other_n] else: connections[conn_name][feature * n_e + this_n, other_feature * n_e + other_n] = (b.random() + 0.01) * 0.3 elif connectivity == 'pairs': for feature in xrange(conv_features): if feature % 2 == 0: for this_n in xrange(n_e): for other_n in xrange(n_e): if is_lattice_connection(n_e_sqrt, this_n, other_n): if mode == 'test': connections[conn_name][feature * n_e + this_n, (feature + 1) * n_e + other_n] = weight_matrix[feature * n_e + this_n, (feature + 1) * n_e + other_n] else: connections[conn_name][feature * n_e + this_n, (feature + 1) * n_e + other_n] = (b.random() + 0.01) * 0.3 elif feature % 2 == 1: for this_n in xrange(n_e): for other_n in xrange(n_e): if is_lattimode == 'test'ce_connection(n_e_sqrt, this_n, other_n): if mode == 'test': connections[conn_name][feature * n_e + this_n, (feature - 1) * n_e + other_n] = weight_matrix[feature * n_e + this_n, (feature - 1) * n_e + other_n] else: connections[conn_name][feature * n_e + this_n, (feature - 1) * n_e + other_n] = (b.random() + 0.01) * 0.3 elif connectivity == 'none': pass # if STDP from excitatory -> excitatory is on and this connection is excitatory -> excitatory if ee_STDP_on and 'ee' in recurrent_conn_names: stdp_methods[name + 'e' + name + 'e'] = b.STDP(connections[name + 'e' + name + 'e'], eqs=eqs_stdp_ee, pre=eqs_stdp_pre_ee, post=eqs_stdp_post_ee, wmin=0., wmax=wmax_ee) print '...creating monitors for:', name # spike rate monitors for excitatory and inhibitory neuron populations rate_monitors[name + 'e'] = b.PopulationRateMonitor(neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor(neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if do_plot: b.figure(fig_num) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms) b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms) # creating lattice locations for each patch if connectivity == 'all': lattice_locations = {} for this_n in xrange(conv_features * n_e): lattice_locations[this_n] = [ other_n for other_n in xrange(conv_features * n_e) if is_lattice_connection(n_e_sqrt, this_n % n_e, other_n % n_e) ] elif connectivity == 'pairs': lattice_locations = {} for this_n in xrange(conv_features * n_e): lattice_locations[this_n] = [] for other_n in xrange(conv_features * n_e): if this_n // n_e % 2 == 0: if is_lattice_connection(n_e_sqrt, this_n % n_e, other_n % n_e) and other_n // n_e == this_n // n_e + 1: lattice_locations[this_n].append(other_n) elif this_n // n_e % 2 == 1: if is_lattice_connection(n_e_sqrt, this_n % n_e, other_n % n_e) and other_n // n_e == this_n // n_e - 1: lattice_locations[this_n].append(other_n) elif connectivity == 'none': lattice_locations = {} # setting up parameters for weight normalization between patches num_lattice_connections = sum([ len(value) for value in lattice_locations.values() ]) weight['ee_recurr'] = (num_lattice_connections / conv_features) * 0.15 # creating Poission spike train from input image (784 vector, 28x28 image) for name in input_population_names: input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor(input_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) # creating connections from input Poisson spike train to convolution patch populations for name in input_connection_names: print '\n...creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for conn_type in input_conn_names: # saved connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # get weight matrix depending on training or test phase if mode == 'test': weight_matrix = get_matrix_from_file(weight_path + conn_name + '_' + ending + '.npy', n_input, conv_features * n_e) # create connections from the windows of the input group to the neuron population input_connections[conn_name] = b.Connection(input_groups['Xe'], neuron_groups[name[1] + conn_type[1]], structure='sparse', state='g' + conn_type[0], delay=True, max_delay=delay[conn_type][1]) if mode == 'test': for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size ** 2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = weight_matrix[convolution_locations[n][idx], feature * n_e + n] else: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size ** 2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = (b.random() + 0.01) * 0.3 # if excitatory -> excitatory STDP is specified, add it here (input to excitatory populations) if ee_STDP_on: print '...creating STDP for connection', name # STDP connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # create the STDP object stdp_methods[conn_name] = b.STDP(input_connections[conn_name], eqs=eqs_stdp_ee, pre=eqs_stdp_pre_ee, post=eqs_stdp_post_ee, wmin=0., wmax=wmax_ee) print '\n'
post = eqs_stdp_post_ee, wmin=0., wmax= wmax_ee) print 'create monitors for', name rate_monitors[name+'e'] = b.PopulationRateMonitor(neuron_groups[name+'e'], bin = (single_example_time+resting_time)/b.second) rate_monitors[name+'i'] = b.PopulationRateMonitor(neuron_groups[name+'i'], bin = (single_example_time+resting_time)/b.second) spike_counters[name+'e'] = b.SpikeCounter(neuron_groups[name+'e']) if record_spikes: spike_monitors[name+'e'] = b.SpikeMonitor(neuron_groups[name+'e']) spike_monitors[name+'i'] = b.SpikeMonitor(neuron_groups[name+'i']) if record_spikes: b.figure(fig_num) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000*b.ms, showlast=1000*b.ms) b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000*b.ms, showlast=1000*b.ms) #------------------------------------------------------------------------------ # create input population and connections from input populations #------------------------------------------------------------------------------ pop_values = [0,0,0] for i,name in enumerate(input_population_names): input_groups[name+'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name+'e'] = b.PopulationRateMonitor(input_groups[name+'e'], bin = (single_example_time+resting_time)/b.second) for name in input_connection_names: print 'create connections between', name[0], 'and', name[1]
def build_network(): global fig_num, assignments neuron_groups['e'] = b.NeuronGroup(n_e_total, neuron_eqs_e, threshold=v_thresh_e, refractory=refrac_e, reset=scr_e, compile=True, freeze=True) neuron_groups['i'] = b.NeuronGroup(n_e_total, neuron_eqs_i, threshold=v_thresh_i, refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) for name in population_names: print '...Creating neuron group:', name # get a subgroup of size 'n_e' from all exc neuron_groups[name + 'e'] = neuron_groups['e'].subgroup(conv_features * n_e) # get a subgroup of size 'n_i' from the inhibitory layer neuron_groups[name + 'i'] = neuron_groups['i'].subgroup(conv_features * n_e) # start the membrane potentials of these groups 40mV below their resting potentials neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...Creating recurrent connections' for name in population_names: # if we're in test mode / using some stored weights if test_mode: # load up adaptive threshold parameters if save_best_model: neuron_groups['e'].theta = np.load( os.path.join(best_weights_dir, '_'.join(['theta_A', ending + '_best.npy']))) else: neuron_groups['e'].theta = np.load( os.path.join(end_weights_dir, '_'.join(['theta_A', ending + '_end.npy']))) else: # otherwise, set the adaptive additive threshold parameter at 20mV neuron_groups['e'].theta = np.ones((n_e_total)) * 20.0 * b.mV for conn_type in recurrent_conn_names: if conn_type == 'ei': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection( neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for n in xrange(n_e): connections[conn_name][feature * n_e + n, feature * n_e + n] = 10.4 elif conn_type == 'ie': # create connection name (composed of population and connections types) conn_name = name + conn_type[0] + name + conn_type[ 1] + '_' + ending # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection( neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection with the 'weightMatrix' loaded from file for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: for n in xrange(n_e): connections[conn_name][feature * n_e + n, other_feature * n_e + n] = 17.4 print '...Creating monitors for:', name # spike rate monitors for excitatory and inhibitory neuron populations rate_monitors[name + 'e'] = b.PopulationRateMonitor( neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor( neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified if record_spikes or plot: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes and plot: b.figure(fig_num, figsize=(8, 6)) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Excitatory spikes per neuron') b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Inhibitory spikes per neuron') b.tight_layout() # creating Poission spike train from input image (784 vector, 28x28 image) for name in input_population_names: input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor( input_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) # creating connections from input Poisson spike train to excitatory neuron population(s) for name in input_connection_names: print '\n...Creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for conn_type in input_conn_names: # saved connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # get weight matrix depending on training or test phase if test_mode: if save_best_model: weight_matrix = np.load( os.path.join( best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) else: weight_matrix = np.load( os.path.join( end_weights_dir, '_'.join([conn_name, ending + '_end.npy']))) # create connections from the windows of the input group to the neuron population input_connections[conn_name] = b.Connection(input_groups['Xe'], neuron_groups[name[1] + conn_type[1]], \ structure='sparse', state='g' + conn_type[0], delay=True, max_delay=delay[conn_type][1]) if test_mode: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size**2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = \ weight_matrix[convolution_locations[n][idx], feature * n_e + n] else: for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size**2): input_connections[conn_name][ convolution_locations[n][idx], feature * n_e + n] = (b.random() + 0.01) * 0.3 if test_mode: if plot: plot_weights_and_assignments(assignments) fig_num += 1 # if excitatory -> excitatory STDP is specified, add it here (input to excitatory populations) if not test_mode: print '...Creating STDP for connection', name # STDP connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # create the STDP object stdp_methods[conn_name] = b.STDP(input_connections[conn_name], eqs=eqs_stdp_ee, \ pre=eqs_stdp_pre_ee, post=eqs_stdp_post_ee, wmin=0., wmax=wmax_ee) print '\n'
def __init__(self, n_input=784, conv_size=16, conv_stride=4, conv_features=50, connectivity='all', weight_dependence=False, post_pre=True, weight_sharing=False, lattice_structure='4', random_lattice_prob=0.0, random_inhibition_prob=0.0): ''' Constructor for the spiking convolutional neural network model. n_input: (flattened) dimensionality of the input data conv_size: side length of convolution windows used conv_stride: stride (horizontal and vertical) of convolution windows used conv_features: number of convolution features (or patches) used connectivity: connection style between patches; one of 'none', 'pairs', all'; more to be added weight_dependence: whether to use weight STDP with weight dependence post_pre: whether to use STDP with both post- and pre-synpatic traces weight_sharing: whether to impose that all neurons within a convolution patch share a common set of weights lattice_structure: lattice connectivity pattern between patches; one of 'none', '4', '8', and 'all' random_lattice_prob: probability of adding random additional lattice connections between patches random_inhibition_prob: probability of adding random additional inhibition edges from the inhibitory to excitatory population ''' self.n_input, self.conv_size, self.conv_stride, self.conv_features, self.connectivity, self.weight_dependence, \ self.post_pre, self.weight_sharing, self.lattice_structure, self.random_lattice_prob, self.random_inhibition_prob = \ n_input, conv_size, conv_stride, conv_features, connectivity, weight_dependence, post_pre, weight_sharing, lattice_structure, \ random_lattice_prob, random_inhibition_prob # number of inputs to the network self.n_input_sqrt = int(math.sqrt(self.n_input)) self.n_excitatory_patch = ( (self.n_input_sqrt - self.conv_size) / self.conv_stride + 1)**2 self.n_excitatory = self.n_excitatory_patch * self.conv_features self.n_excitatory_patch_sqrt = int(math.sqrt(self.n_excitatory_patch)) self.n_inhibitory_patch = self.n_excitatory_patch self.n_inhibitory = self.n_excitatory self.conv_features_sqrt = int(math.ceil(math.sqrt(self.conv_features))) # time (in seconds) per data example presentation and rest period in between self.single_example_time = 0.35 * b.second self.resting_time = 0.15 * b.second # set update intervals self.update_interval = 100 self.weight_update_interval = 10 self.print_progress_interval = 10 # rest potential parameters, reset potential parameters, threshold potential parameters, and refractory periods v_rest_e, v_rest_i = -65. * b.mV, -60. * b.mV v_reset_e, v_reset_i = -65. * b.mV, -45. * b.mV v_thresh_e, v_thresh_i = -52. * b.mV, -40. * b.mV refrac_e, refrac_i = 5. * b.ms, 2. * b.ms # time constants, learning rates, max weights, weight dependence, etc. tc_pre_ee, tc_post_ee = 20 * b.ms, 20 * b.ms nu_ee_pre, nu_ee_post = 0.0001, 0.01 exp_ee_post = exp_ee_pre = 0.2 w_mu_pre, w_mu_post = 0.2, 0.2 # parameters for neuron equations tc_theta = 1e7 * b.ms theta_plus = 0.05 * b.mV scr_e = 'v = v_reset_e; theta += theta_plus; timer = 0*ms' offset = 20.0 * b.mV v_thresh_e = '(v>(theta - offset + ' + str( v_thresh_e) + ')) * (timer>refrac_e)' # equations for neurons neuron_eqs_e = ''' dv / dt = ((v_rest_e - v) + (I_synE + I_synI) / nS) / (100 * ms) : volt I_synE = ge * nS * - v : amp I_synI = gi * nS * (-100. * mV - v) : amp dge / dt = -ge / (1.0*ms) : 1 dgi / dt = -gi / (2.0*ms) : 1 dtheta / dt = -theta / (tc_theta) : volt dtimer / dt = 100.0 : ms ''' neuron_eqs_i = ''' dv/dt = ((v_rest_i - v) + (I_synE + I_synI) / nS) / (10*ms) : volt I_synE = ge * nS * -v : amp I_synI = gi * nS * (-85.*mV-v) : amp dge/dt = -ge/(1.0*ms) : 1 dgi/dt = -gi/(2.0*ms) : 1 ''' # STDP synaptic traces eqs_stdp_ee = ''' dpre / dt = -pre / tc_pre_ee : 1.0 dpost / dt = -post / tc_post_ee : 1.0 ''' # dictionaries for weights and delays self.weight, self.delay = {}, {} # setting weight, delay, and intensity parameters self.weight['ee_input'] = (conv_size**2) * 0.175 self.delay['ee_input'] = (0 * b.ms, 10 * b.ms) self.delay['ei_input'] = (0 * b.ms, 5 * b.ms) self.input_intensity = self.start_input_intensity = 2.0 self.wmax_ee = 1.0 # populations, connections, saved connections, etc. self.input_population_names = ['X'] self.population_names = ['A'] self.input_connection_names = ['XA'] self.save_connections = ['XeAe', 'AeAe'] self.input_connection_names = ['ee_input'] self.recurrent_connection_names = ['ei', 'ie', 'ee'] # setting STDP update rule if weight_dependence: if post_pre: eqs_stdp_pre_ee = 'pre = 1.; w -= nu_ee_pre * post * w ** exp_ee_pre' eqs_stdp_post_ee = 'w += nu_ee_post * pre * (wmax_ee - w) ** exp_ee_post; post = 1.' else: eqs_stdp_pre_ee = 'pre = 1.' eqs_stdp_post_ee = 'w += nu_ee_post * pre * (wmax_ee - w) ** exp_ee_post; post = 1.' else: if post_pre: eqs_stdp_pre_ee = 'pre = 1.; w -= nu_ee_pre * post' eqs_stdp_post_ee = 'w += nu_ee_post * pre; post = 1.' else: eqs_stdp_pre_ee = 'pre = 1.' eqs_stdp_post_ee = 'w += nu_ee_post * pre; post = 1.' print '\n' # for filesaving purposes stdp_input = '' if self.weight_dependence: stdp_input += 'weight_dependence_' else: stdp_input += 'no_weight_dependence_' if self.post_pre: stdp_input += 'post_pre' else: stdp_input += 'no_post_pre' if self.weight_sharing: use_weight_sharing = 'weight_sharing' else: use_weight_sharing = 'no_weight_sharing' # set ending of filename saves self.ending = self.connectivity + '_' + str(self.conv_size) + '_' + str(self.conv_stride) + '_' + str(self.conv_features) + \ '_' + str(self.n_excitatory_patch) + '_' + stdp_input + '_' + \ use_weight_sharing + '_' + str(self.lattice_structure) + '_' + str(self.random_lattice_prob) + \ '_' + str(self.random_inhibition_prob) self.fig_num = 1 # creating dictionaries for various objects self.neuron_groups, self.input_groups, self.connections, self.input_connections, self.stdp_methods, self.rate_monitors, \ self.spike_monitors, self.spike_counters, self.output_numbers = {}, {}, {}, {}, {}, {}, {}, {}, {} # creating convolution locations inside the input image self.convolution_locations = {} for n in xrange(self.n_excitatory_patch): self.convolution_locations[n] = [ ((n % self.n_excitatory_patch_sqrt) * self.conv_stride + (n // self.n_excitatory_patch_sqrt) \ * self.n_input_sqrt * self.conv_stride) + (x * self.n_input_sqrt) + y \ for y in xrange(self.conv_size) for x in xrange(self.conv_size) ] # instantiating neuron spike / votes monitor self.result_monitor = np.zeros( (self.update_interval, self.conv_features, self.n_excitatory_patch)) # creating overarching neuron populations self.neuron_groups['e'] = b.NeuronGroup(self.n_excitatory, neuron_eqs_e, threshold=v_thresh_e, \ refractory=refrac_e, reset=scr_e, compile=True, freeze=True) self.neuron_groups['i'] = b.NeuronGroup(self.n_inhibitory, neuron_eqs_i, threshold=v_thresh_i, \ refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) # create neuron subpopulations for name in self.population_names: print '...creating neuron group:', name # get a subgroup of size 'n_e' from all exc self.neuron_groups[name + 'e'] = self.neuron_groups['e'].subgroup( self.conv_features * self.n_excitatory_patch) # get a subgroup of size 'n_i' from the inhibitory layer self.neuron_groups[name + 'i'] = self.neuron_groups['i'].subgroup( self.conv_features * self.n_excitatory_patch) # start the membrane potentials of these groups 40mV below their resting potentials self.neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV self.neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...creating recurrent connections' for name in self.population_names: # set the adaptive additive threshold parameter at 20mV self.neuron_groups['e'].theta = np.ones( (self.n_excitatory)) * 20.0 * b.mV for connection_type in self.recurrent_connection_names: if connection_type == 'ei': # create connection name (composed of population and connection types) connection_name = name + connection_type[ 0] + name + connection_type[1] # create a connection from the first group in conn_name with the second group self.connections[connection_name] = b.Connection(self.neuron_groups[connection_name[0:2]], \ self.neuron_groups[connection_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(self.conv_features): for n in xrange(self.n_excitatory_patch): self.connections[conn_name][feature * self.n_excitatory_patch + n, \ feature * self.n_excitatory_patch + n] = 10.4 elif connection_type == 'ie': # create connection name (composed of population and connection types) connection_name = name + connection_type[ 0] + name + connection_type[1] # create a connection from the first group in conn_name with the second group self.connections[connection_name] = b.Connection(self.neuron_groups[connection_name[0:2]], \ self.neuron_groups[connection_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(self.conv_features): for other_feature in xrange(self.conv_features): if feature != other_feature: for n in xrange(self.n_excitatory_patch): self.connections[connection_name][feature * self.n_excitatory_patch + n, \ other_feature * self.n_excitatory_patch + n] = 17.4 # adding random inhibitory connections as specified if self.random_inhibition_prob != 0.0: for feature in xrange(self.conv_features): for other_feature in xrange(self.conv_features): for n_this in xrange(self.n_excitatory_patch): for n_other in xrange( self.n_excitatory_patch): if n_this != n_other: if b.random( ) < self.random_inhibition_prob: self.connections[connection_name][feature * self.n_excitatory_patch + n_this, \ other_feature * self.n_excitatory_patch + n_other] = 17.4 elif connection_type == 'ee': # create connection name (composed of population and connection types) connection_name = name + connection_type[ 0] + name + connection_type[1] # create a connection from the first group in conn_name with the second group self.connections[connection_name] = b.Connection(self.neuron_groups[connection_name[0:2]], \ self.neuron_groups[connection_name[2:4]], structure='sparse', state='g' + connection_type[0]) # instantiate the created connection if self.connectivity == 'all': for feature in xrange(self.conv_features): for other_feature in xrange(self.conv_features): if feature != other_feature: for this_n in xrange( self.n_excitatory_patch): for other_n in xrange( self.n_excitatory_patch): if is_lattice_connection( self. n_excitatory_patch_sqrt, this_n, other_n): self.connections[connection_name][feature * self.n_excitatory_patch + this_n, \ other_feature * self.n_excitatory_patch + other_n] = \ (b.random() + 0.01) * 0.3 elif self.connectivity == 'pairs': for feature in xrange(self.conv_features): if feature % 2 == 0: for this_n in xrange(self.n_excitatory_patch): for other_n in xrange( self.n_excitatory_patch): if is_lattice_connection( self.n_excitatory_patch_sqrt, this_n, other_n): self.connections[connection_name][feature * self.n_excitatory_patch + this_n, \ (feature + 1) * self.n_excitatory_patch + other_n] = (b.random() + 0.01) * 0.3 elif feature % 2 == 1: for this_n in xrange(self.n_excitatory_patch): for other_n in xrange( self.n_excitatory_patch): if is_lattice_connection( self.n_excitatory_patch_patch, this_n, other_n): self.connections[connection_name][feature * self.n_excitatory_patch + this_n, \ (feature - 1) * self.n_excitatory_patch + other_n] = (b.random() + 0.01) * 0.3 elif connectivity == 'linear': for feature in xrange(self.conv_features): if feature != self.conv_features - 1: for this_n in xrange(self.n_excitatory_patch): for other_n in xrange( self.n_excitatory_patch): if is_lattice_connection( self.n_excitatory_patch_sqrt, this_n, other_n): self.connections[connection_name][feature * self.n_excitatory_patch + this_n, \ (feature + 1) * self.n_excitatory_patch + other_n] = \ (b.random() + 0.01) * 0.3 if feature != 0: for this_n in xrange(self.n_excitatory_patch): for other_n in xrange( self.n_excitatory_patch): if is_lattice_connection( self.n_excitatory_patch_sqrt, this_n, other_n): self.connections[connection_name][feature * self.n_excitatory_patch + this_n, \ (feature - 1) * self.n_excitatory_patch + other_n] = \ (b.random() + 0.01) * 0.3 elif self.connectivity == 'none': pass # if STDP from excitatory -> excitatory is on and this connection is excitatory -> excitatory if 'ee' in self.recurrent_conn_names: self.stdp_methods[name + 'e' + name + 'e'] = b.STDP(self.connections[name + 'e' + name + 'e'], \ eqs=eqs_stdp_ee, pre=eqs_stdp_pre_ee, \ post=eqs_stdp_post_ee, wmin=0., wmax=self.wmax_ee) print '...creating monitors for:', name # spike rate monitors for excitatory and inhibitory neuron populations self.rate_monitors[name + 'e'] = b.PopulationRateMonitor(self.neuron_groups[name + 'e'], \ bin=(self.single_example_time + self.resting_time) / b.second) self.rate_monitors[name + 'i'] = b.PopulationRateMonitor(self.neuron_groups[name + 'i'], \ bin=(self.single_example_time + self.resting_time) / b.second) self.spike_counters[name + 'e'] = b.SpikeCounter( self.neuron_groups[name + 'e']) # record neuron population spikes self.spike_monitors[name + 'e'] = b.SpikeMonitor( self.neuron_groups[name + 'e']) self.spike_monitors[name + 'i'] = b.SpikeMonitor( self.neuron_groups[name + 'i']) if do_plot: b.figure(self.fig_num) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(self.spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms) b.subplot(212) b.raster_plot(self.spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms) # specifying locations of lattice connections self.lattice_locations = {} if self.connectivity == 'all': for this_n in xrange(self.conv_features * self.n_excitatory_patch): self.lattice_locations[this_n] = [ other_n for other_n in xrange(self.conv_features * self.n_excitatory_patch) \ if is_lattice_connection(self.n_excitatory_patch_sqrt, \ this_n % self.n_excitatory_patch, other_n % self.n_excitatory_patch) ] elif self.connectivity == 'pairs': for this_n in xrange(self.conv_features * self.n_excitatory_patch): self.lattice_locations[this_n] = [] for other_n in xrange(self.conv_features * self.n_excitatory_patch): if this_n // self.n_excitatory_patch % 2 == 0: if is_lattice_connection(self.n_excitatory_patch_sqrt, this_n % self.n_excitatory_patch, \ other_n % self.n_excitatory_patch) and \ other_n // self.n_excitatory_patch == this_n // self.n_excitatory_patch + 1: self.lattice_locations[this_n].append(other_n) elif this_n // self.n_excitatory_patch % 2 == 1: if is_lattice_connection(self.n_excitatory_patch_sqrt, this_n % self.n_excitatory_patch, \ other_n % self.n_excitatory_patch) and \ other_n // self.n_excitatory_patch == this_n // self.n_excitatory_patch - 1: self.lattice_locations[this_n].append(other_n) elif self.connectivity == 'linear': for this_n in xrange(self.conv_features * self.n_excitatory_patch): self.lattice_locations[this_n] = [] for other_n in xrange(conv_features * self.n_excitatory_patch): if this_n // self.n_excitatory_patch != self.conv_features - 1: if is_lattice_connection(self.n_excitatory_patch_sqrt, this_n % self.n_excitatory_patch, \ other_n % self.n_excitatory_patch) and \ other_n // self.n_excitatory_patch == this_n // self.n_excitatory_patch + 1: self.lattice_locations[this_n].append(other_n) elif this_n // self.n_excitatory_patch != 0: if is_lattice_connection(self.n_excitatory_patch_sqrt, this_n % self.n_excitatory_patch, \ other_n % self.n_excitatory_patch) and \ other_n // self.n_excitatory_patch == this_n // self.n_excitatory_patch - 1: self.lattice_locations[this_n].append(other_n) # setting up parameters for weight normalization between patches num_lattice_connections = sum( [len(value) for value in lattice_locations.values()]) self.weight['ee_recurr'] = (num_lattice_connections / self.conv_features) * 0.15 # creating Poission spike train from input image (784 vector, 28x28 image) for name in self.input_population_names: self.input_groups[name + 'e'] = b.PoissonGroup(self.n_input, 0) self.rate_monitors[name + 'e'] = b.PopulationRateMonitor(self.input_groups[name + 'e'], \ bin=(self.single_example_time + self.resting_time) / b.second) # creating connections from input Poisson spike train to convolution patch populations for name in self.input_connection_names: print '\n...creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for connection_type in self.input_conn_names: # saved connection name connection_name = name[0] + connection_type[0] + name[ 1] + connection_type[1] # create connections from the windows of the input group to the neuron population self.input_connections[connection_name] = b.Connection(self.input_groups['Xe'], \ self.neuron_groups[name[1] + connection_type[1]], structure='sparse', \ state='g' + connection_type[0], delay=True, max_delay=self.delay[connection_type][1]) for feature in xrange(self.conv_features): for n in xrange(self.n_excitatory_patch): for idx in xrange(self.conv_size**2): self.input_connections[connection_name][self.convolution_locations[n][idx], \ feature * self.n_excitatory_patch + n] = (b.random() + 0.01) * 0.3 # if excitatory -> excitatory STDP is specified, add it here (input to excitatory populations) print '...creating STDP for connection', name # STDP connection name connection_name = name[0] + connection_type[0] + name[ 1] + connection_type[1] # create the STDP object self.stdp_methods[connection_name] = b.STDP(self.input_connections[connection_name], \ eqs=eqs_stdp_ee, pre=eqs_stdp_pre_ee, post=eqs_stdp_post_ee, wmin=0., wmax=self.wmax_ee) print '\n'
bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor( neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified if record_spikes: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes and plot: b.figure(fig_num) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms) b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms) ################################################################# # CREATE INPUT POPULATION AND CONNECTIONS FROM INPUT POPULATION # ################################################################# # creating convolution locations inside the input image convolution_locations = {} for n in xrange(n_e):
def run(self): #------------------------------------------------------------------------------ # run the simulation and set inputs #------------------------------------------------------------------------------ previousSpikeCountB = np.zeros(self.nE) previousSpikeCountC = np.zeros(self.nE) self.resultMonitor = np.zeros((self.numExamples,len(self.populationNames))) start = time.time() if self.recordSpikes: b.figure() b.ion() b.subplot(211) b.raster_plot(self.spikeMonitors['He'], refresh=1000*b.ms, showlast=1000*b.ms) b.subplot(212) b.raster_plot(self.spikeMonitors['Hi'], refresh=1000*b.ms, showlast=1000*b.ms) # realTimeMonitor = None # realTimeMonitor = rltmMon.RealtimeConnectionMonitor(self.connections['HeAe'], cmap=cm.get_cmap('gist_rainbow'), # wmin=0, wmax=self.wmaxEE, clock=Clock(1000*b.ms)) for j in xrange(int(self.numExamples)): if self.restingTime or j==0: for i,name in enumerate(self.inputPopulationNames): rates = np.ones(self.nE) * 0 self.inputGroups[name+'e'].rate = rates self.net.run(self.restingTime)#, report='text') if j%self.normalization_interval == 0: self.normalizeWeights() print 'set new rates of the inputs' self.popValues = [0]*len(self.inputPopulationNames) for i,name in enumerate(self.inputPopulationNames): if name == 'X': self.popValues[i] = np.random.rand(); rates = self.createTopoInput(self.nE, self.popValues[i]) self.resultMonitor[j,0] = self.popValues[i] else: if self.testMode: rates = np.ones(self.nE) * 0 elif name == 'Y': self.popValues[i] = (self.popValues[0]*2) % 1. rates = self.createTopoInput(self.nE, self.popValues[i]) elif name == 'Z': self.popValues[i] = (self.popValues[0]**2) % 1. rates = self.createTopoInput(self.nE, self.popValues[i]) if self.testMode: rates += noise self.inputGroups[name+'e'].rate = rates print 'run number:', j+1, 'of', int(self.numExamples) self.net.run(self.singleExampleTime)#, report='text') currentSpikeCountB = np.asarray(self.spikeCounters['Be'].count[:]) - previousSpikeCountB currentSpikeCountC = np.asarray(self.spikeCounters['Ce'].count[:]) - previousSpikeCountC # print currentSpikeCount, np.asarray(spikeCounters['Ce'].count[:]), previousSpikeCount previousSpikeCountB = np.copy(self.spikeCounters['Be'].count[:]) previousSpikeCountC = np.copy(self.spikeCounters['Ce'].count[:]) self.resultMonitor[j,1] = self.computePopVector(currentSpikeCountB) self.resultMonitor[j,2] = self.computePopVector(currentSpikeCountC) difference = np.abs((self.resultMonitor[j,0]**2)%1. - self.resultMonitor[j,2]) if difference > 0.5: difference = 1-difference print 'Pop. activity: ', self.resultMonitor[j,2], ', Desired activity: ', (self.resultMonitor[j,0]**2)%1., ', Difference: ', difference if not self.testMode: if self.numExamples <= 1000: if j%100 == 0: self.saveConnections(str(j)) else: if j%1000 == 0: self.saveConnections(str(j)) end = time.time() print 'time needed to simulate:', end - start #------------------------------------------------------------------------------ # save results #------------------------------------------------------------------------------ print 'save results' if self.testMode: np.savetxt(self.dataPath + 'activity/resultPopVecs' + str(self.numExamples) + '.txt', self.resultMonitor) else: self.saveConnections(str(j)) self.normalizeWeights() self.saveConnections()
neuron_groups[i] = neuron_groups['e'].subgroup(num_neurons[i]) # print 'create monitors for', i rate_monitors[i] = b.PopulationRateMonitor(neuron_groups[i], bin = (single_example_time+resting_time)/b.second) spike_counters[i] = b.SpikeCounter(neuron_groups[i]) if record_spikes: spike_monitors[i] = b.SpikeMonitor(neuron_groups[i]) state_monitors[i] = b.MultiStateMonitor(neuron_groups[i], ['v'], record=[0]) if record_spikes: b.figure() b.ion() b.subplot(211) b.raster_plot(spike_monitors[1], refresh=1000*b.ms, showlast=1000*b.ms) b.subplot(212) b.raster_plot(spike_monitors[1], refresh=1000*b.ms, showlast=1000*b.ms) #------------------------------------------------------------------------------ # create input population #------------------------------------------------------------------------------ pop_values = [0,0,0] for i,name in enumerate(input_population_names): if poisson_inputs: input_groups[name] = b.PoissonGroup(n_input*2, 0) else: input_groups[name] = b.SpikeGeneratorGroup(n_input*2, [])
if not test_mode: save_connections() else: np.save(data_path + 'activity/resultPopVecs' + str(num_examples), result_monitor) np.save(data_path + 'activity/inputNumbers' + str(num_examples), input_numbers) #------------------------------------------------------------------------------ # plot results #------------------------------------------------------------------------------ if rate_monitors: b.figure(fig_num) fig_num += 1 for i, name in enumerate(rate_monitors): b.subplot(len(rate_monitors), 1, i) b.plot(rate_monitors[name].times / b.second, rate_monitors[name].rate, '.') b.title('Rates of population ' + name) if spike_monitors: b.figure(fig_num) fig_num += 1 for i, name in enumerate(spike_monitors): b.subplot(len(spike_monitors), 1, i) b.raster_plot(spike_monitors[name]) b.title('Spikes of population ' + name) if spike_counters: b.figure(fig_num) fig_num += 1
def run(self): #------------------------------------------------------------------------------ # run the simulation and set inputs #------------------------------------------------------------------------------ start = time.time() previousSpikeCount = np.zeros((self.nE,len(self.populationNames))) currentSpikeCount = np.zeros((self.nE,len(self.populationNames))) if self.recordSpikes: b.figure() b.ion() b.subplot(411) b.raster_plot(self.spikeMonitors['Ae'], refresh=1000*b.ms, showlast=1000*b.ms) b.subplot(412) b.raster_plot(self.spikeMonitors['Be'], refresh=1000*b.ms, showlast=1000*b.ms) b.subplot(413) b.raster_plot(self.spikeMonitors['Ce'], refresh=1000*b.ms, showlast=1000*b.ms) b.subplot(414) b.raster_plot(self.spikeMonitors['He'], refresh=1000*b.ms, showlast=1000*b.ms) # realTimeMonitor = None # realTimeMonitor = rltmMon.RealtimeConnectionMonitor(self.connections['HeAe'], cmap=cm.get_cmap('gist_rainbow'), # wmin=0, wmax=self.wmaxEE, clock=Clock(1000*b.ms)) for j in xrange(int(self.numExamples)): if self.restingTime or j==0: for i,name in enumerate(self.inputPopulationNames): rates = np.ones(self.nE) * 0 self.inputGroups[name+'e'].rate = rates self.net.run(self.restingTime)#, report='text') if j%self.normalization_interval == 0: self.normalizeWeights() print 'set new rates of the inputs' self.setNewInput(self,j) print 'run number:', j+1, 'of', int(self.numExamples) self.net.run(self.singleExampleTime)#, report='text') for i,name in enumerate(self.populationNames): name += 'e' currentSpikeCount[:,i] = np.asarray(self.spikeCounters[name].count[:]) - previousSpikeCount[:,i] # print currentSpikeCount, np.asarray(spikeCounters['Ce'].count[:]), previousSpikeCount previousSpikeCount[:,i] = np.copy(self.spikeCounters[name].count[:]) self.resultMonitor[j,i] = self.computePopVector(currentSpikeCount[:,i]) print name, 'pop. activity: ', self.resultMonitor[j,i], ', spikecount:', sum(currentSpikeCount[:,i]) for i,name in enumerate(self.inputPopulationNames): print name, 'pop. activity: ', (self.popValues[j,i]) if not self.testMode: if self.numExamples <= 1000: if j%100==0 and not j==0: self.saveConnections(str(j)) else: if j%10000==0 and not j==0: self.saveConnections(str(j)) end = time.time() print 'time needed to simulate:', end - start #------------------------------------------------------------------------------ # save results #------------------------------------------------------------------------------ print 'save results' if self.testMode: np.savetxt(self.dataPath + 'activity/resultPopVecs' + str(self.numExamples) + '.txt', self.resultMonitor) np.savetxt(self.dataPath + 'activity/spikeCount' + str(self.gaussian_peak_low) + '.txt', self.spikeCounters['Ae'].count[:]/(self.singleExampleTime*int(self.numExamples))) np.savetxt(self.dataPath + 'activity/inputSpikeCount' + str(self.gaussian_peak_low) + '.txt', self.spikeCounters['Xe'].count[:]/(self.singleExampleTime*int(self.numExamples))) np.savetxt(self.dataPath + 'activity/popVecs' + str(self.numExamples) + '.txt', self.popValues) else: self.saveConnections(str(j)) self.normalizeWeights() self.saveConnections()
def plotResults(self): #------------------------------------------------------------------------------ # plot results #------------------------------------------------------------------------------ if self.rateMonitors: b.figure() for i, name in enumerate(self.rateMonitors): b.subplot(len(self.rateMonitors), 1, i) b.plot(self.rateMonitors[name].times/b.second, self.rateMonitors[name].rate, '.') b.title('rates of population ' + name) if self.spikeMonitors: b.figure() for i, name in enumerate(self.spikeMonitors): b.subplot(len(self.spikeMonitors), 1, i) b.raster_plot(self.spikeMonitors[name]) b.title('spikes of population ' + name) if name=='Ce': timePoints = np.linspace(0+(self.singleExampleTime+self.restingTime)/(2*b.second)*1000, self.runtime/b.second*1000-(self.singleExampleTime+self.restingTime)/(2*b.second)*1000, self.numExamples) b.plot(timePoints, self.resultMonitor[:,0]*self.nE, 'g') b.plot(timePoints, self.resultMonitor[:,1]*self.nE, 'r') if self.stateMonitors: b.figure() for i, name in enumerate(self.stateMonitors): b.plot(self.stateMonitors[name].times/b.second, self.stateMonitors[name]['v'][0], label = name + ' v 0') b.legend() b.title('membrane voltages of population ' + name) b.figure() for i, name in enumerate(self.stateMonitors): b.plot(self.stateMonitors[name].times/b.second, self.stateMonitors[name]['ge'][0], label = name + ' v 0') b.legend() b.title('conductances of population ' + name) plotWeights = [ # 'XeAe', # 'XeAi', # 'AeAe', # 'AeAi', # 'AiAe', # 'AiAi', # 'BeBe', # 'BeBi', # 'BiBe', # 'BiBi', # 'CeCe', # 'CeCi', 'CiCe', # 'CiCi', # 'HeHe', # 'HeHi', # 'HiHe', # 'HiHi', 'AeHe', # 'BeHe', # 'CeHe', 'HeAe', # 'HeBe', # 'HeCe', ] for name in plotWeights: b.figure() # my_cmap = matplotlib.colors.LinearSegmentedColormap.from_list('own2',['#f4f4f4', '#000000']) # my_cmap2 = matplotlib.colors.LinearSegmentedColormap.from_list('own2',['#000000', '#f4f4f4']) if name[1]=='e': nSrc = self.nE else: nSrc = self.nI if name[3]=='e': nTgt = self.nE else: nTgt = self.nI w_post = np.zeros((nSrc, nTgt)) connMatrix = self.connections[name][:] for i in xrange(nSrc): w_post[i, connMatrix.rowj[i]] = connMatrix.rowdata[i] im2 = b.imshow(w_post, interpolation="nearest", vmin = 0, cmap=cm.get_cmap('gist_ncar')) #my_cmap b.colorbar(im2) b.title('weights of connection' + name) if self.plotError: error = np.abs(self.resultMonitor[:,1] - self.resultMonitor[:,0]) correctionIdxs = np.where(error > 0.5)[0] correctedError = [1 - error[i] if (i in correctionIdxs) else error[i] for i in xrange(len(error))] correctedErrorSum = np.average(correctedError) b.figure() b.scatter(self.resultMonitor[:,1], self.resultMonitor[:,0], c=range(len(error)), cmap=cm.get_cmap('gray')) b.title('Error: ' + str(correctedErrorSum)) b.xlabel('Desired activity') b.ylabel('Population activity') b.figure() error = np.abs(self.resultMonitor[:,1] - self.resultMonitor[:,0]) correctionIdxs = np.where(error > 0.5)[0] correctedError = [1 - error[i] if (i in correctionIdxs) else error[i] for i in xrange(len(error))] correctedErrorSum = np.average(correctedError) b.scatter(self.resultMonitor[:,1], self.resultMonitor[:,0], c=self.resultMonitor[:,2], cmap=cm.get_cmap('gray')) b.title('Error: ' + str(correctedErrorSum)) b.xlabel('Desired activity') b.ylabel('Population activity') b.ioff() b.show()
neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor( neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) if record_spikes: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes: b.figure(fig_num) fig_num += 1 b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms) b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms) #------------------------------------------------------------------------------ # create input population and connections from input populations #------------------------------------------------------------------------------ pop_values = [0, 0, 0] for i, name in enumerate(input_population_names): input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor(
def plotTuningHeatmap(dataPath, gaussianDistances, ax1=None): b.rcParams['font.size'] = 20 # averagingWindowSize = 1 nE = 1600 if ax1==None: b.figure(figsize=(8,15)) fig_axis = b.subplot(1,1,1) else: b.sca(ax1) fig_axis=ax1 path = dataPath + '/dist'+str(gaussianDistances[0])+'/' +'activity/' spikeCount = np.load(path + 'spikeCountPerExample.npy') numMeasurements = len(spikeCount[:,0,0]) measurementSpace = np.arange(numMeasurements) populationSpikeCount = np.zeros((numMeasurements, len(gaussianDistances))) for i,gaussianDistance in enumerate(gaussianDistances): # distanceAngle = gaussianDistance * 2 * 360 path = dataPath + '/dist'+str(gaussianDistance)+'/' +'activity/' spikeCount = np.load(path + 'spikeCountPerExample.npy') for j in xrange(nE): populationSpikeCount[:,i] += np.roll(spikeCount[:,j,0], int(-1.*j/nE*numMeasurements+ numMeasurements/2)) # j = 0 # populationSpikeCount[:,i] += np.roll(spikeCount[:,j,0], int(-1.*j/nE*numMeasurements+ numMeasurements/2)) # populationSpikeCount[:,i] = movingaverage(populationSpikeCount[:,i],averagingWindowSize) populationSpikeCount[:,i] /= np.max(populationSpikeCount[:,i]) if gaussianDistance==0.: mean = sum(measurementSpace*populationSpikeCount[:,i])/numMeasurements #note this correction sigma = sum(populationSpikeCount[:,i]*(measurementSpace-mean)**2)/numMeasurements #note this correction popt, _ = curve_fit(gaus,measurementSpace,populationSpikeCount[:,i],p0=[1,mean,sigma]) # tuningWidth = abs(popt[2])*2 tuningWidth = np.sum(populationSpikeCount>=0.5) tuningWidthAngle = tuningWidth/50.*360. print 'Gaussian amplitude:', popt[0], 'mean:', popt[1], 'std.:', popt[2], \ ', tuning width:', tuningWidth, ', tuning width angle:', tuningWidthAngle minX = max(0,round(numMeasurements/2-tuningWidth*2)) maxX = min(numMeasurements, round(numMeasurements/2+tuningWidth*2)) minY = round(0) maxY = round(tuningWidth/50.*len(gaussianDistances)*2*2) print minX, maxX, minY, maxY croppedCount = populationSpikeCount[minX:maxX,minY:maxY] fig_axis.imshow(croppedCount.transpose(), aspect='auto', extent=[minX, maxX, 2, 0]) # b.colorbar() fig_axis.set_xlabel('Distance from preferred stimulus, \ndivided by tuning width') fig_axis.set_xticks([numMeasurements/2-tuningWidth*2, numMeasurements/2-tuningWidth, numMeasurements/2, numMeasurements/2+tuningWidth, numMeasurements/2+tuningWidth*2]) fig_axis.set_xticklabels(['-2', '-1', '0', '1', '2']) fig_axis.set_yticks([0., 0.5, 1, 1.5, 2]) fig_axis.spines['top'].set_visible(False) fig_axis.spines['right'].set_visible(False) fig_axis.spines['bottom'].set_visible(False) fig_axis.spines['left'].set_visible(False) fig_axis.get_xaxis().tick_bottom() fig_axis.get_yaxis().tick_left() if ax1==None: b.savefig(dataPath + '/tuningHeatmap.png', dpi=300, bbox_inches='tight') return tuningWidthAngle
def build_network(): global fig_num neuron_groups['e'] = b.NeuronGroup(n_e_total, neuron_eqs_e, threshold=v_thresh_e, \ refractory=refrac_e, reset=scr_e, compile=True, freeze=True) neuron_groups['i'] = b.NeuronGroup(n_e_total, neuron_eqs_i, threshold=v_thresh_i, \ refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) for name in population_names: print '...Creating neuron group:', name # get a subgroup of size 'n_e' from all exc neuron_groups[name + 'e'] = neuron_groups['e'].subgroup(conv_features * n_e) # get a subgroup of size 'n_i' from the inhibitory layer neuron_groups[name + 'i'] = neuron_groups['i'].subgroup(conv_features * n_e) # start the membrane potentials of these groups 40mV below their resting potentials neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...Creating recurrent connections' for name in population_names: neuron_groups['e'].theta = np.load( os.path.join(best_weights_dir, '_'.join(['theta_A', ending + '_best.npy']))) for conn_type in recurrent_conn_names: if conn_type == 'ei': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection( neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for n in xrange(n_e): connections[conn_name][feature * n_e + n, feature * n_e + n] = 10.4 elif conn_type == 'ie': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # load weight matrix weight_matrix = np.load( os.path.join(best_weights_dir, '_'.join([conn_name, ending, 'best.npy']))) # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection( neuron_groups[conn_name[0:2]], neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # define the actual synaptic connections and strengths for feature in xrange(conv_features): for other_feature in xrange(conv_features): if feature != other_feature: for n in xrange(n_e): connections[conn_name][feature * n_e + n, other_feature * n_e + n] = inhibition_level print '...Creating monitors for:', name # spike rate monitors for excitatory and inhibitory neuron populations rate_monitors[name + 'e'] = b.PopulationRateMonitor( neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor( neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified if record_spikes and do_plot: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes and do_plot: b.figure(fig_num, figsize=(8, 6)) b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Excitatory spikes per neuron') b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=1000 * b.ms, showlast=1000 * b.ms, title='Inhibitory spikes per neuron') b.tight_layout() fig_num += 1 # creating Poission spike train from input image (784 vector, 28x28 image) for name in input_population_names: input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor( input_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) # creating connections from input Poisson spike train to excitatory neuron population(s) for name in input_connection_names: print '\n...Creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for conn_type in input_conn_names: # saved connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # get weight matrix depending on training or test phase weight_matrix = np.load( os.path.join(best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) # create connections from the windows of the input group to the neuron population input_connections[conn_name] = b.Connection(input_groups['Xe'], neuron_groups[name[1] + conn_type[1]], \ structure='sparse', state='g' + conn_type[0], delay=True, max_delay=delay[conn_type][1]) for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size**2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = \ weight_matrix[convolution_locations[n][idx], feature * n_e + n] if do_plot: plot_2d_input_weights() fig_num += 1 print '\n'
def build_network(): global fig_num neuron_groups['e'] = b.NeuronGroup(n_e_total, neuron_eqs_e, threshold=v_thresh_e, refractory=refrac_e, reset=scr_e, compile=True, freeze=True) neuron_groups['i'] = b.NeuronGroup(n_e_total, neuron_eqs_i, threshold=v_thresh_i, refractory=refrac_i, reset=v_reset_i, compile=True, freeze=True) for name in ['A']: print '...Creating neuron group:', name # get a subgroup of size 'n_e' from all exc neuron_groups[name + 'e'] = neuron_groups['e'].subgroup(conv_features * n_e) # get a subgroup of size 'n_i' from the inhibitory layer neuron_groups[name + 'i'] = neuron_groups['i'].subgroup(conv_features * n_e) # start the membrane potentials of these groups 40mV below their resting potentials neuron_groups[name + 'e'].v = v_rest_e - 40. * b.mV neuron_groups[name + 'i'].v = v_rest_i - 40. * b.mV print '...Creating recurrent connections' for name in ['A']: neuron_groups['e'].theta = np.load( os.path.join(best_weights_dir, '_'.join(['theta_A', ending + '_best.npy']))) for conn_type in ['ei', 'ie']: if conn_type == 'ei': # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], \ neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # instantiate the created connection for feature in xrange(conv_features): for n in xrange(n_e): connections[conn_name][feature * n_e + n, feature * n_e + n] = 10.4 elif conn_type == 'ie' and not remove_inhibition: # create connection name (composed of population and connection types) conn_name = name + conn_type[0] + name + conn_type[1] # create a connection from the first group in conn_name with the second group connections[conn_name] = b.Connection(neuron_groups[conn_name[0:2]], \ neuron_groups[conn_name[2:4]], structure='sparse', state='g' + conn_type[0]) # define the actual synaptic connections and strengths for feature in xrange(conv_features): if inhib_scheme in ['far', 'strengthen']: for other_feature in set(range(conv_features)) - set( neighbor_mapping[feature]): if inhib_scheme == 'far': for n in xrange(n_e): connections[conn_name][feature * n_e + n, other_feature * n_e + n] = 17.4 elif inhib_scheme == 'strengthen': if n_e == 1: x, y = feature // np.sqrt( n_e_total), feature % np.sqrt( n_e_total) x_, y_ = other_feature // np.sqrt( n_e_total), other_feature % np.sqrt( n_e_total) else: x, y = feature // np.sqrt( conv_features), feature % np.sqrt( conv_features) x_, y_ = other_feature // np.sqrt( conv_features ), other_feature % np.sqrt(conv_features) for n in xrange(n_e): connections[conn_name][feature * n_e + n, other_feature * n_e + n] = \ min(17.4, inhib_const * np.sqrt(euclidean([x, y], [x_, y_]))) elif inhib_scheme == 'increasing': for other_feature in xrange(conv_features): if n_e == 1: x, y = feature // np.sqrt( n_e_total), feature % np.sqrt(n_e_total) x_, y_ = other_feature // np.sqrt( n_e_total), other_feature % np.sqrt( n_e_total) else: x, y = feature // np.sqrt( conv_features), feature % np.sqrt( conv_features) x_, y_ = other_feature // np.sqrt( conv_features), other_feature % np.sqrt( conv_features) if feature != other_feature: for n in xrange(n_e): connections[conn_name][feature * n_e + n, other_feature * n_e + n] = \ min(17.4, inhib_const * np.sqrt(euclidean([x, y], [x_, y_]))) else: raise Exception( 'Expecting one of "far", "increasing", or "strengthen" for argument "inhib_scheme".' ) # spike rate monitors for excitatory and inhibitory neuron populations rate_monitors[name + 'e'] = b.PopulationRateMonitor( neuron_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) rate_monitors[name + 'i'] = b.PopulationRateMonitor( neuron_groups[name + 'i'], bin=(single_example_time + resting_time) / b.second) spike_counters[name + 'e'] = b.SpikeCounter(neuron_groups[name + 'e']) # record neuron population spikes if specified if record_spikes: spike_monitors[name + 'e'] = b.SpikeMonitor(neuron_groups[name + 'e']) spike_monitors[name + 'i'] = b.SpikeMonitor(neuron_groups[name + 'i']) if record_spikes and do_plot: if reset_state_vars: time_window = single_example_time * 1000 else: time_window = (single_example_time + resting_time) * 1000 b.figure(fig_num, figsize=(8, 6)) b.ion() b.subplot(211) b.raster_plot(spike_monitors['Ae'], refresh=time_window * b.ms, showlast=time_window * b.ms, title='Excitatory spikes per neuron') b.subplot(212) b.raster_plot(spike_monitors['Ai'], refresh=time_window * b.ms, showlast=time_window * b.ms, title='Inhibitory spikes per neuron') b.tight_layout() fig_num += 1 # creating Poission spike train from input image (784 vector, 28x28 image) for name in ['X']: input_groups[name + 'e'] = b.PoissonGroup(n_input, 0) rate_monitors[name + 'e'] = b.PopulationRateMonitor( input_groups[name + 'e'], bin=(single_example_time + resting_time) / b.second) # creating connections from input Poisson spike train to convolution patch populations for name in ['XA']: print '\n...Creating connections between', name[0], 'and', name[1] # for each of the input connection types (in this case, excitatory -> excitatory) for conn_type in ['ee_input']: # saved connection name conn_name = name[0] + conn_type[0] + name[1] + conn_type[1] # get weight matrix depending on training or test phase weight_matrix = np.load( os.path.join(best_weights_dir, '_'.join([conn_name, ending + '_best.npy']))) # create connections from the windows of the input group to the neuron population input_connections[conn_name] = b.Connection(input_groups['Xe'], neuron_groups[name[1] + \ conn_type[1]], structure='sparse', state='g' + conn_type[0], delay=True, max_delay=delay[conn_type][1]) for feature in xrange(conv_features): for n in xrange(n_e): for idx in xrange(conv_size**2): input_connections[conn_name][convolution_locations[n][idx], feature * n_e + n] = \ weight_matrix[convolution_locations[n][idx], feature * n_e + n] if do_plot: plot_2d_input_weights() fig_num += 1