def visualise_connectivity(S): Ns = len(S.source) Nt = len(S.target) b.figure(figsize=(10, 4)) b.subplot(121) b.plot(b.zeros(Ns), b.arange(Ns), 'ok', ms=10) b.plot(b.ones(Nt), b.arange(Nt), 'ok', ms=10) for i, j in zip(S.i, S.j): b.plot([0, 1], [i, j], '-k') b.xticks([0, 1], ['Source', 'Target']) b.ylabel('Neuron index') b.xlim(-0.1, 1.1) b.ylim(-1, max(Ns, Nt)) b.subplot(122) b.plot(S.i, S.j, 'ok') b.xlim(-1, Ns) b.ylim(-1, Nt) b.xlabel('Source neuron index') b.ylabel('Target neuron index')
save_theta() if not test_mode: save_connections() else: np.save(data_path + 'activity/resultPopVecs' + str(num_examples), result_monitor) np.save(data_path + 'activity/inputNumbers' + str(num_examples), input_numbers) #------------------------------------------------------------------------------ # plot results #------------------------------------------------------------------------------ if rate_monitors: b2.figure(fig_num) fig_num += 1 for i, name in enumerate(rate_monitors): b2.subplot(len(rate_monitors), 1, 1+i) b2.plot(rate_monitors[name].t/b2.second, rate_monitors[name].rate, '.') b2.title('Rates of population ' + name) if spike_monitors: b2.figure(fig_num) fig_num += 1 for i, name in enumerate(spike_monitors): b2.subplot(len(spike_monitors), 1, 1+i) b2.plot(spike_monitors[name].t/b2.ms, spike_monitors[name].i, '.') b2.title('Spikes of population ' + name) if spike_counters: b2.figure(fig_num) fig_num += 1 b2.plot(spike_monitors['Ae'].count[:])